Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,599 Bytes
b478453 8131b67 b478453 8131b67 b478453 8131b67 b478453 8131b67 b478453 8131b67 ef9e08c 8131b67 b478453 8131b67 b478453 8131b67 b478453 8131b67 b478453 ef9e08c 8131b67 ef9e08c 8131b67 b478453 ef9e08c b478453 8131b67 b478453 8131b67 b478453 8131b67 b478453 8131b67 b478453 8131b67 b478453 8131b67 b478453 8131b67 b478453 8131b67 b478453 8131b67 b478453 8131b67 b478453 8131b67 b478453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import logging
import math
import mimetypes
import os
import textwrap
from glob import glob
from typing import Union
import cv2
import imageio
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import spaces
from matplotlib.patches import Patch
from moviepy.editor import VideoFileClip, clips_array
from PIL import Image
from embodied_gen.data.differentiable_render import entrypoint as render_api
from embodied_gen.utils.enum import LayoutInfo, Scene3DItemEnum
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
__all__ = [
"render_asset3d",
"merge_images_video",
"filter_small_connected_components",
"filter_image_small_connected_components",
"combine_images_to_grid",
"SceneTreeVisualizer",
"is_image_file",
"parse_text_prompts",
"check_object_edge_truncated",
]
@spaces.GPU
def render_asset3d(
mesh_path: str,
output_root: str,
distance: float = 5.0,
num_images: int = 1,
elevation: list[float] = (0.0,),
pbr_light_factor: float = 1.2,
return_key: str = "image_color/*",
output_subdir: str = "renders",
gen_color_mp4: bool = False,
gen_viewnormal_mp4: bool = False,
gen_glonormal_mp4: bool = False,
no_index_file: bool = False,
with_mtl: bool = True,
) -> list[str]:
input_args = dict(
mesh_path=mesh_path,
output_root=output_root,
uuid=output_subdir,
distance=distance,
num_images=num_images,
elevation=elevation,
pbr_light_factor=pbr_light_factor,
with_mtl=with_mtl,
gen_color_mp4=gen_color_mp4,
gen_viewnormal_mp4=gen_viewnormal_mp4,
gen_glonormal_mp4=gen_glonormal_mp4,
no_index_file=no_index_file,
)
try:
_ = render_api(**input_args)
except Exception as e:
logger.error(f"Error occurred during rendering: {e}.")
dst_paths = glob(os.path.join(output_root, output_subdir, return_key))
return dst_paths
def merge_images_video(color_images, normal_images, output_path) -> None:
width = color_images[0].shape[1]
combined_video = [
np.hstack([rgb_img[:, : width // 2], normal_img[:, width // 2 :]])
for rgb_img, normal_img in zip(color_images, normal_images)
]
imageio.mimsave(output_path, combined_video, fps=50)
return
def merge_video_video(
video_path1: str, video_path2: str, output_path: str
) -> None:
"""Merge two videos by the left half and the right half of the videos."""
clip1 = VideoFileClip(video_path1)
clip2 = VideoFileClip(video_path2)
if clip1.size != clip2.size:
raise ValueError("The resolutions of the two videos do not match.")
width, height = clip1.size
clip1_half = clip1.crop(x1=0, y1=0, x2=width // 2, y2=height)
clip2_half = clip2.crop(x1=width // 2, y1=0, x2=width, y2=height)
final_clip = clips_array([[clip1_half, clip2_half]])
final_clip.write_videofile(output_path, codec="libx264")
def filter_small_connected_components(
mask: Union[Image.Image, np.ndarray],
area_ratio: float,
connectivity: int = 8,
) -> np.ndarray:
if isinstance(mask, Image.Image):
mask = np.array(mask)
num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(
mask,
connectivity=connectivity,
)
small_components = np.zeros_like(mask, dtype=np.uint8)
mask_area = (mask != 0).sum()
min_area = mask_area // area_ratio
for label in range(1, num_labels):
area = stats[label, cv2.CC_STAT_AREA]
if area < min_area:
small_components[labels == label] = 255
mask = cv2.bitwise_and(mask, cv2.bitwise_not(small_components))
return mask
def filter_image_small_connected_components(
image: Union[Image.Image, np.ndarray],
area_ratio: float = 10,
connectivity: int = 8,
) -> np.ndarray:
if isinstance(image, Image.Image):
image = image.convert("RGBA")
image = np.array(image)
mask = image[..., 3]
mask = filter_small_connected_components(mask, area_ratio, connectivity)
image[..., 3] = mask
return image
def combine_images_to_grid(
images: list[str | Image.Image],
cat_row_col: tuple[int, int] = None,
target_wh: tuple[int, int] = (512, 512),
) -> list[str | Image.Image]:
n_images = len(images)
if n_images == 1:
return images
if cat_row_col is None:
n_col = math.ceil(math.sqrt(n_images))
n_row = math.ceil(n_images / n_col)
else:
n_row, n_col = cat_row_col
images = [
Image.open(p).convert("RGB") if isinstance(p, str) else p
for p in images
]
images = [img.resize(target_wh) for img in images]
grid_w, grid_h = n_col * target_wh[0], n_row * target_wh[1]
grid = Image.new("RGB", (grid_w, grid_h), (0, 0, 0))
for idx, img in enumerate(images):
row, col = divmod(idx, n_col)
grid.paste(img, (col * target_wh[0], row * target_wh[1]))
return [grid]
class SceneTreeVisualizer:
def __init__(self, layout_info: LayoutInfo) -> None:
self.tree = layout_info.tree
self.relation = layout_info.relation
self.objs_desc = layout_info.objs_desc
self.G = nx.DiGraph()
self.root = self._find_root()
self._build_graph()
self.role_colors = {
Scene3DItemEnum.BACKGROUND.value: "plum",
Scene3DItemEnum.CONTEXT.value: "lightblue",
Scene3DItemEnum.ROBOT.value: "lightcoral",
Scene3DItemEnum.MANIPULATED_OBJS.value: "lightgreen",
Scene3DItemEnum.DISTRACTOR_OBJS.value: "lightgray",
Scene3DItemEnum.OTHERS.value: "orange",
}
def _find_root(self) -> str:
children = {c for cs in self.tree.values() for c, _ in cs}
parents = set(self.tree.keys())
roots = parents - children
if not roots:
raise ValueError("No root node found.")
return next(iter(roots))
def _build_graph(self):
for parent, children in self.tree.items():
for child, relation in children:
self.G.add_edge(parent, child, relation=relation)
def _get_node_role(self, node: str) -> str:
if node == self.relation.get(Scene3DItemEnum.BACKGROUND.value):
return Scene3DItemEnum.BACKGROUND.value
if node == self.relation.get(Scene3DItemEnum.CONTEXT.value):
return Scene3DItemEnum.CONTEXT.value
if node == self.relation.get(Scene3DItemEnum.ROBOT.value):
return Scene3DItemEnum.ROBOT.value
if node in self.relation.get(
Scene3DItemEnum.MANIPULATED_OBJS.value, []
):
return Scene3DItemEnum.MANIPULATED_OBJS.value
if node in self.relation.get(
Scene3DItemEnum.DISTRACTOR_OBJS.value, []
):
return Scene3DItemEnum.DISTRACTOR_OBJS.value
return Scene3DItemEnum.OTHERS.value
def _get_positions(
self, root, width=1.0, vert_gap=0.1, vert_loc=1, xcenter=0.5, pos=None
):
if pos is None:
pos = {root: (xcenter, vert_loc)}
else:
pos[root] = (xcenter, vert_loc)
children = list(self.G.successors(root))
if children:
dx = width / len(children)
next_x = xcenter - width / 2 - dx / 2
for child in children:
next_x += dx
pos = self._get_positions(
child,
width=dx,
vert_gap=vert_gap,
vert_loc=vert_loc - vert_gap,
xcenter=next_x,
pos=pos,
)
return pos
def render(
self,
save_path: str,
figsize=(8, 6),
dpi=300,
title: str = "Scene 3D Hierarchy Tree",
):
node_colors = [
self.role_colors[self._get_node_role(n)] for n in self.G.nodes
]
pos = self._get_positions(self.root)
plt.figure(figsize=figsize)
nx.draw(
self.G,
pos,
with_labels=True,
arrows=False,
node_size=2000,
node_color=node_colors,
font_size=10,
font_weight="bold",
)
# Draw edge labels
edge_labels = nx.get_edge_attributes(self.G, "relation")
nx.draw_networkx_edge_labels(
self.G,
pos,
edge_labels=edge_labels,
font_size=9,
font_color="black",
)
# Draw small description text under each node (if available)
for node, (x, y) in pos.items():
desc = self.objs_desc.get(node)
if desc:
wrapped = "\n".join(textwrap.wrap(desc, width=30))
plt.text(
x,
y - 0.006,
wrapped,
fontsize=6,
ha="center",
va="top",
wrap=True,
color="black",
bbox=dict(
facecolor="dimgray",
edgecolor="darkgray",
alpha=0.1,
boxstyle="round,pad=0.2",
),
)
plt.title(title, fontsize=12)
task_desc = self.relation.get("task_desc", "")
if task_desc:
plt.suptitle(
f"Task Description: {task_desc}", fontsize=10, y=0.999
)
plt.axis("off")
legend_handles = [
Patch(facecolor=color, edgecolor='black', label=role)
for role, color in self.role_colors.items()
]
plt.legend(
handles=legend_handles,
loc="lower center",
ncol=3,
bbox_to_anchor=(0.5, -0.1),
fontsize=9,
)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.savefig(save_path, dpi=dpi, bbox_inches="tight")
plt.close()
def load_scene_dict(file_path: str) -> dict:
scene_dict = {}
with open(file_path, "r", encoding='utf-8') as f:
for line in f:
line = line.strip()
if not line or ":" not in line:
continue
scene_id, desc = line.split(":", 1)
scene_dict[scene_id.strip()] = desc.strip()
return scene_dict
def is_image_file(filename: str) -> bool:
mime_type, _ = mimetypes.guess_type(filename)
return mime_type is not None and mime_type.startswith('image')
def parse_text_prompts(prompts: list[str]) -> list[str]:
if len(prompts) == 1 and prompts[0].endswith(".txt"):
with open(prompts[0], "r") as f:
prompts = [
line.strip()
for line in f
if line.strip() and not line.strip().startswith("#")
]
return prompts
def check_object_edge_truncated(
mask: np.ndarray, edge_threshold: int = 5
) -> bool:
"""Checks if a binary object mask is truncated at the image edges.
Args:
mask: A 2D binary NumPy array where nonzero values indicate the object region.
edge_threshold: Number of pixels from each image edge to consider for truncation.
Defaults to 5.
Returns:
True if the object is fully enclosed (not truncated).
False if the object touches or crosses any image boundary.
"""
top = mask[:edge_threshold, :].any()
bottom = mask[-edge_threshold:, :].any()
left = mask[:, :edge_threshold].any()
right = mask[:, -edge_threshold:].any()
return not (top or bottom or left or right)
if __name__ == "__main__":
merge_video_video(
"outputs/imageto3d/room_bottle7/room_bottle_007/URDF_room_bottle_007/mesh_glo_normal.mp4", # noqa
"outputs/imageto3d/room_bottle7/room_bottle_007/URDF_room_bottle_007/mesh.mp4", # noqa
"merge.mp4",
)
|