# Project EmbodiedGen # # Copyright (c) 2025 Horizon Robotics. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. import base64 import logging import math import os import sys from glob import glob from io import BytesIO from typing import Union import cv2 import imageio import numpy as np import PIL.Image as Image import spaces import torch from moviepy.editor import VideoFileClip, clips_array from tqdm import tqdm from embodied_gen.data.differentiable_render import entrypoint as render_api current_file_path = os.path.abspath(__file__) current_dir = os.path.dirname(current_file_path) sys.path.append(os.path.join(current_dir, "../..")) from thirdparty.TRELLIS.trellis.renderers.mesh_renderer import MeshRenderer from thirdparty.TRELLIS.trellis.representations import MeshExtractResult from thirdparty.TRELLIS.trellis.utils.render_utils import ( render_frames, yaw_pitch_r_fov_to_extrinsics_intrinsics, ) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) __all__ = [ "render_asset3d", "merge_images_video", "filter_small_connected_components", "filter_image_small_connected_components", "combine_images_to_base64", "render_mesh", "render_video", ] @spaces.GPU def render_asset3d( mesh_path: str, output_root: str, distance: float = 5.0, num_images: int = 1, elevation: list[float] = (0.0,), pbr_light_factor: float = 1.5, return_key: str = "image_color/*", output_subdir: str = "renders", gen_color_mp4: bool = False, gen_viewnormal_mp4: bool = False, gen_glonormal_mp4: bool = False, ) -> list[str]: input_args = dict( mesh_path=mesh_path, output_root=output_root, uuid=output_subdir, distance=distance, num_images=num_images, elevation=elevation, pbr_light_factor=pbr_light_factor, with_mtl=True, ) if gen_color_mp4: input_args["gen_color_mp4"] = True if gen_viewnormal_mp4: input_args["gen_viewnormal_mp4"] = True if gen_glonormal_mp4: input_args["gen_glonormal_mp4"] = True try: _ = render_api(**input_args) except Exception as e: logger.error(f"Error occurred during rendering: {e}.") dst_paths = glob(os.path.join(output_root, output_subdir, return_key)) return dst_paths def merge_images_video(color_images, normal_images, output_path) -> None: width = color_images[0].shape[1] combined_video = [ np.hstack([rgb_img[:, : width // 2], normal_img[:, width // 2 :]]) for rgb_img, normal_img in zip(color_images, normal_images) ] imageio.mimsave(output_path, combined_video, fps=50) return def merge_video_video( video_path1: str, video_path2: str, output_path: str ) -> None: """Merge two videos by the left half and the right half of the videos.""" clip1 = VideoFileClip(video_path1) clip2 = VideoFileClip(video_path2) if clip1.size != clip2.size: raise ValueError("The resolutions of the two videos do not match.") width, height = clip1.size clip1_half = clip1.crop(x1=0, y1=0, x2=width // 2, y2=height) clip2_half = clip2.crop(x1=width // 2, y1=0, x2=width, y2=height) final_clip = clips_array([[clip1_half, clip2_half]]) final_clip.write_videofile(output_path, codec="libx264") def filter_small_connected_components( mask: Union[Image.Image, np.ndarray], area_ratio: float, connectivity: int = 8, ) -> np.ndarray: if isinstance(mask, Image.Image): mask = np.array(mask) num_labels, labels, stats, _ = cv2.connectedComponentsWithStats( mask, connectivity=connectivity, ) small_components = np.zeros_like(mask, dtype=np.uint8) mask_area = (mask != 0).sum() min_area = mask_area // area_ratio for label in range(1, num_labels): area = stats[label, cv2.CC_STAT_AREA] if area < min_area: small_components[labels == label] = 255 mask = cv2.bitwise_and(mask, cv2.bitwise_not(small_components)) return mask def filter_image_small_connected_components( image: Union[Image.Image, np.ndarray], area_ratio: float = 10, connectivity: int = 8, ) -> np.ndarray: if isinstance(image, Image.Image): image = image.convert("RGBA") image = np.array(image) mask = image[..., 3] mask = filter_small_connected_components(mask, area_ratio, connectivity) image[..., 3] = mask return image def combine_images_to_base64( images: list[str | Image.Image], cat_row_col: tuple[int, int] = None, target_wh: tuple[int, int] = (512, 512), ) -> str: n_images = len(images) if cat_row_col is None: n_col = math.ceil(math.sqrt(n_images)) n_row = math.ceil(n_images / n_col) else: n_row, n_col = cat_row_col images = [ Image.open(p).convert("RGB") if isinstance(p, str) else p for p in images[: n_row * n_col] ] images = [img.resize(target_wh) for img in images] grid_w, grid_h = n_col * target_wh[0], n_row * target_wh[1] grid = Image.new("RGB", (grid_w, grid_h), (255, 255, 255)) for idx, img in enumerate(images): row, col = divmod(idx, n_col) grid.paste(img, (col * target_wh[0], row * target_wh[1])) buffer = BytesIO() grid.save(buffer, format="PNG") return base64.b64encode(buffer.getvalue()).decode("utf-8") @spaces.GPU def render_mesh(sample, extrinsics, intrinsics, options={}, **kwargs): renderer = MeshRenderer() renderer.rendering_options.resolution = options.get("resolution", 512) renderer.rendering_options.near = options.get("near", 1) renderer.rendering_options.far = options.get("far", 100) renderer.rendering_options.ssaa = options.get("ssaa", 4) rets = {} for extr, intr in tqdm(zip(extrinsics, intrinsics), desc="Rendering"): res = renderer.render(sample, extr, intr) if "normal" not in rets: rets["normal"] = [] normal = torch.lerp( torch.zeros_like(res["normal"]), res["normal"], res["mask"] ) normal = np.clip( normal.detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255 ).astype(np.uint8) rets["normal"].append(normal) return rets @spaces.GPU def render_video( sample, resolution=512, bg_color=(0, 0, 0), num_frames=300, r=2, fov=40, **kwargs, ): yaws = torch.linspace(0, 2 * 3.1415, num_frames) yaws = yaws.tolist() pitch = [0.5] * num_frames extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics( yaws, pitch, r, fov ) render_fn = ( render_mesh if isinstance(sample, MeshExtractResult) else render_frames ) result = render_fn( sample, extrinsics, intrinsics, {"resolution": resolution, "bg_color": bg_color}, **kwargs, ) return result if __name__ == "__main__": # Example usage: merge_video_video( "outputs/imageto3d/room_bottle7/room_bottle_007/URDF_room_bottle_007/mesh_glo_normal.mp4", # noqa "outputs/imageto3d/room_bottle7/room_bottle_007/URDF_room_bottle_007/mesh.mp4", # noqa "merge.mp4", ) image_base64 = combine_images_to_base64( [ "apps/assets/example_image/sample_00.jpg", "apps/assets/example_image/sample_01.jpg", "apps/assets/example_image/sample_02.jpg", ] )