# Project EmbodiedGen # # Copyright (c) 2025 Horizon Robotics. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. import logging import os import shutil import xml.etree.ElementTree as ET from datetime import datetime from xml.dom.minidom import parseString import numpy as np import trimesh from embodied_gen.utils.gpt_clients import GPT_CLIENT, GPTclient from embodied_gen.utils.process_media import render_asset3d from embodied_gen.utils.tags import VERSION logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) __all__ = ["URDFGenerator"] URDF_TEMPLATE = """ 0.8 0.6 1.0 "0.0.0" "unknown" "unknown" 0.0 0.0 0.0 0.0 0.0 "-1" "" """ class URDFGenerator(object): def __init__( self, gpt_client: GPTclient, mesh_file_list: list[str] = ["material_0.png", "material.mtl"], prompt_template: str = None, attrs_name: list[str] = None, render_dir: str = "urdf_renders", render_view_num: int = 4, ) -> None: if mesh_file_list is None: mesh_file_list = [] self.mesh_file_list = mesh_file_list self.output_mesh_dir = "mesh" self.output_render_dir = render_dir self.gpt_client = gpt_client self.render_view_num = render_view_num if render_view_num == 4: view_desc = "This is orthographic projection showing the front, left, right and back views " # noqa else: view_desc = "This is the rendered views " if prompt_template is None: prompt_template = ( view_desc + """of the 3D object asset, category: {category}. You are an expert in 3D object analysis and physical property estimation. Give the category of this object asset (within 3 words), (if category is already provided, use it directly), accurately describe this 3D object asset (within 15 words), and give the recommended geometric height range (unit: meter), weight range (unit: kilogram), the average static friction coefficient of the object relative to rubber and the average dynamic friction coefficient of the object relative to rubber. Return response format as shown in Output Example. IMPORTANT: Inputed images are orthographic projection showing the front, left, right and back views, the first image is always the front view. Use the object's pose and orientation in the rendered images to estimate its **true vertical height as it appears in the image**, not the real-world length or width of the object. For example: - A pen standing upright in the front view → vertical height: 0.15-0.2 m - A pen lying horizontally in the front view → vertical height: 0.01-0.02 m (based on its thickness in the image) Output Example: Category: cup Description: shiny golden cup with floral design Height: 0.1-0.15 m Weight: 0.3-0.6 kg Static friction coefficient: 1.1 Dynamic friction coefficient: 0.9 """ ) self.prompt_template = prompt_template if attrs_name is None: attrs_name = [ "category", "description", "min_height", "max_height", "real_height", "min_mass", "max_mass", "version", "generate_time", "gs_model", ] self.attrs_name = attrs_name def parse_response(self, response: str) -> dict[str, any]: lines = response.split("\n") lines = [line.strip() for line in lines if line] category = lines[0].split(": ")[1] description = lines[1].split(": ")[1] min_height, max_height = map( lambda x: float(x.strip().replace(",", "").split()[0]), lines[2].split(": ")[1].split("-"), ) min_mass, max_mass = map( lambda x: float(x.strip().replace(",", "").split()[0]), lines[3].split(": ")[1].split("-"), ) mu1 = float(lines[4].split(": ")[1].replace(",", "")) mu2 = float(lines[5].split(": ")[1].replace(",", "")) return { "category": category.lower(), "description": description.lower(), "min_height": round(min_height, 4), "max_height": round(max_height, 4), "min_mass": round(min_mass, 4), "max_mass": round(max_mass, 4), "mu1": round(mu1, 2), "mu2": round(mu2, 2), "version": VERSION, "generate_time": datetime.now().strftime("%Y%m%d%H%M%S"), } def generate_urdf( self, input_mesh: str, output_dir: str, attr_dict: dict, output_name: str = None, ) -> str: """Generate a URDF file for a given mesh with specified attributes. Args: input_mesh (str): Path to the input mesh file. output_dir (str): Directory to store the generated URDF and processed mesh. attr_dict (dict): Dictionary containing attributes like height, mass, and friction coefficients. output_name (str, optional): Name for the generated URDF and robot. Returns: str: Path to the generated URDF file. """ # 1. Load and normalize the mesh mesh = trimesh.load(input_mesh) mesh_scale = np.ptp(mesh.vertices, axis=0).max() mesh.vertices /= mesh_scale # Normalize to [-0.5, 0.5] raw_height = np.ptp(mesh.vertices, axis=0)[1] # 2. Scale the mesh to real height real_height = attr_dict["real_height"] scale = round(real_height / raw_height, 6) mesh = mesh.apply_scale(scale) # 3. Prepare output directories and save scaled mesh mesh_folder = os.path.join(output_dir, self.output_mesh_dir) os.makedirs(mesh_folder, exist_ok=True) obj_name = os.path.basename(input_mesh) mesh_output_path = os.path.join(mesh_folder, obj_name) mesh.export(mesh_output_path) # 4. Copy additional mesh files, if any input_dir = os.path.dirname(input_mesh) for file in self.mesh_file_list: src_file = os.path.join(input_dir, file) dest_file = os.path.join(mesh_folder, file) if os.path.isfile(src_file): shutil.copy(src_file, dest_file) # 5. Determine output name if output_name is None: output_name = os.path.splitext(obj_name)[0] # 6. Load URDF template and update attributes robot = ET.fromstring(URDF_TEMPLATE) robot.set("name", output_name) link = robot.find("link") if link is None: raise ValueError("URDF template is missing 'link' element.") link.set("name", output_name) # Update visual geometry visual = link.find("visual/geometry/mesh") if visual is not None: visual.set( "filename", os.path.join(self.output_mesh_dir, obj_name) ) visual.set("scale", "1.0 1.0 1.0") # Update collision geometry collision = link.find("collision/geometry/mesh") if collision is not None: collision.set( "filename", os.path.join(self.output_mesh_dir, obj_name) ) collision.set("scale", "1.0 1.0 1.0") # Update friction coefficients gazebo = link.find("collision/gazebo") if gazebo is not None: for param, key in zip(["mu1", "mu2"], ["mu1", "mu2"]): element = gazebo.find(param) if element is not None: element.text = f"{attr_dict[key]:.2f}" # Update mass inertial = link.find("inertial/mass") if inertial is not None: mass_value = (attr_dict["min_mass"] + attr_dict["max_mass"]) / 2 inertial.set("value", f"{mass_value:.4f}") # Add extra_info element to the link extra_info = link.find("extra_info/scale") if extra_info is not None: extra_info.text = f"{scale:.6f}" for key in self.attrs_name: extra_info = link.find(f"extra_info/{key}") if extra_info is not None and key in attr_dict: extra_info.text = f"{attr_dict[key]}" # 7. Write URDF to file os.makedirs(output_dir, exist_ok=True) urdf_path = os.path.join(output_dir, f"{output_name}.urdf") tree = ET.ElementTree(robot) tree.write(urdf_path, encoding="utf-8", xml_declaration=True) logger.info(f"URDF file saved to {urdf_path}") return urdf_path @staticmethod def get_attr_from_urdf( urdf_path: str, attr_root: str = ".//link/extra_info", attr_name: str = "scale", ) -> float: if not os.path.exists(urdf_path): raise FileNotFoundError(f"URDF file not found: {urdf_path}") mesh_scale = 1.0 tree = ET.parse(urdf_path) root = tree.getroot() extra_info = root.find(attr_root) if extra_info is not None: scale_element = extra_info.find(attr_name) if scale_element is not None: mesh_scale = float(scale_element.text) return mesh_scale @staticmethod def add_quality_tag( urdf_path: str, results, output_path: str = None ) -> None: if output_path is None: output_path = urdf_path tree = ET.parse(urdf_path) root = tree.getroot() custom_data = ET.SubElement(root, "custom_data") quality = ET.SubElement(custom_data, "quality") for key, value in results: checker_tag = ET.SubElement(quality, key) checker_tag.text = str(value) rough_string = ET.tostring(root, encoding="utf-8") formatted_string = parseString(rough_string).toprettyxml(indent=" ") cleaned_string = "\n".join( [line for line in formatted_string.splitlines() if line.strip()] ) os.makedirs(os.path.dirname(output_path), exist_ok=True) with open(output_path, "w", encoding="utf-8") as f: f.write(cleaned_string) logger.info(f"URDF files saved to {output_path}") def get_estimated_attributes(self, asset_attrs: dict): estimated_attrs = { "height": round( (asset_attrs["min_height"] + asset_attrs["max_height"]) / 2, 4 ), "mass": round( (asset_attrs["min_mass"] + asset_attrs["max_mass"]) / 2, 4 ), "mu": round((asset_attrs["mu1"] + asset_attrs["mu2"]) / 2, 4), "category": asset_attrs["category"], } return estimated_attrs def __call__( self, mesh_path: str, output_root: str, text_prompt: str = None, category: str = "unknown", **kwargs, ): if text_prompt is None or len(text_prompt) == 0: text_prompt = self.prompt_template text_prompt = text_prompt.format(category=category.lower()) image_path = render_asset3d( mesh_path, output_root, num_images=self.render_view_num, output_subdir=self.output_render_dir, ) # Hardcode tmp because of the openrouter can't input multi images. if "openrouter" in self.gpt_client.endpoint: from embodied_gen.utils.process_media import ( combine_images_to_base64, ) image_path = combine_images_to_base64(image_path) response = self.gpt_client.query(text_prompt, image_path) if response is None: asset_attrs = { "category": category.lower(), "description": category.lower(), "min_height": 1, "max_height": 1, "min_mass": 1, "max_mass": 1, "mu1": 0.8, "mu2": 0.6, "version": VERSION, "generate_time": datetime.now().strftime("%Y%m%d%H%M%S"), } else: asset_attrs = self.parse_response(response) for key in self.attrs_name: if key in kwargs: asset_attrs[key] = kwargs[key] asset_attrs["real_height"] = round( (asset_attrs["min_height"] + asset_attrs["max_height"]) / 2, 4 ) self.estimated_attrs = self.get_estimated_attributes(asset_attrs) urdf_path = self.generate_urdf(mesh_path, output_root, asset_attrs) logger.info(f"response: {response}") return urdf_path if __name__ == "__main__": urdf_gen = URDFGenerator(GPT_CLIENT, render_view_num=4) urdf_path = urdf_gen( mesh_path="outputs/imageto3d/cma/o5/URDF_o5/mesh/o5.obj", output_root="outputs/test_urdf", # category="coffee machine", # min_height=1.0, # max_height=1.2, version=VERSION, ) # zip_files( # input_paths=[ # "scripts/apps/tmp/2umpdum3e5n/URDF_sample/mesh", # "scripts/apps/tmp/2umpdum3e5n/URDF_sample/sample.urdf" # ], # output_zip="zip.zip" # )