Spaces:
Running
on
Zero
Running
on
Zero
xinjie.wang
commited on
Commit
·
d31a703
1
Parent(s):
f219113
update
Browse files- app.py +2 -141
- embodied_gen/validators/urdf_convertor.py +3 -0
app.py
CHANGED
@@ -1,149 +1,10 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import
|
3 |
-
import yaml
|
4 |
-
import base64
|
5 |
-
import logging
|
6 |
-
import os
|
7 |
-
from io import BytesIO
|
8 |
-
from typing import Optional
|
9 |
-
|
10 |
-
import yaml
|
11 |
-
from openai import AzureOpenAI, OpenAI # pip install openai
|
12 |
-
from PIL import Image
|
13 |
-
from tenacity import (
|
14 |
-
retry,
|
15 |
-
stop_after_attempt,
|
16 |
-
stop_after_delay,
|
17 |
-
wait_random_exponential,
|
18 |
-
)
|
19 |
|
20 |
logging.basicConfig(level=logging.INFO)
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
|
24 |
-
class GPTclient:
|
25 |
-
"""A client to interact with the GPT model via OpenAI or Azure API."""
|
26 |
-
|
27 |
-
def __init__(
|
28 |
-
self,
|
29 |
-
endpoint: str,
|
30 |
-
api_key: str,
|
31 |
-
model_name: str = "yfb-gpt-4o",
|
32 |
-
api_version: str = None,
|
33 |
-
verbose: bool = False,
|
34 |
-
):
|
35 |
-
if api_version is not None:
|
36 |
-
self.client = AzureOpenAI(
|
37 |
-
azure_endpoint=endpoint,
|
38 |
-
api_key=api_key,
|
39 |
-
api_version=api_version,
|
40 |
-
)
|
41 |
-
else:
|
42 |
-
self.client = OpenAI(
|
43 |
-
base_url=endpoint,
|
44 |
-
api_key=api_key,
|
45 |
-
)
|
46 |
-
|
47 |
-
self.endpoint = endpoint
|
48 |
-
self.model_name = model_name
|
49 |
-
self.image_formats = {".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif"}
|
50 |
-
self.verbose = verbose
|
51 |
-
logger.info(f"Using GPT model: {self.model_name}.")
|
52 |
-
|
53 |
-
@retry(
|
54 |
-
wait=wait_random_exponential(min=1, max=20),
|
55 |
-
stop=(stop_after_attempt(10) | stop_after_delay(30)),
|
56 |
-
)
|
57 |
-
def completion_with_backoff(self, **kwargs):
|
58 |
-
return self.client.chat.completions.create(**kwargs)
|
59 |
-
|
60 |
-
def query(
|
61 |
-
self,
|
62 |
-
text_prompt: str,
|
63 |
-
image_base64: Optional[list[str | Image.Image]] = None,
|
64 |
-
system_role: Optional[str] = None,
|
65 |
-
) -> Optional[str]:
|
66 |
-
"""Queries the GPT model with a text and optional image prompts.
|
67 |
-
|
68 |
-
Args:
|
69 |
-
text_prompt (str): The main text input that the model responds to.
|
70 |
-
image_base64 (Optional[List[str]]): A list of image base64 strings
|
71 |
-
or local image paths or PIL.Image to accompany the text prompt.
|
72 |
-
system_role (Optional[str]): Optional system-level instructions
|
73 |
-
that specify the behavior of the assistant.
|
74 |
-
|
75 |
-
Returns:
|
76 |
-
Optional[str]: The response content generated by the model based on
|
77 |
-
the prompt. Returns `None` if an error occurs.
|
78 |
-
"""
|
79 |
-
if system_role is None:
|
80 |
-
system_role = "You are a highly knowledgeable assistant specializing in physics, engineering, and object properties." # noqa
|
81 |
-
|
82 |
-
content_user = [
|
83 |
-
{
|
84 |
-
"type": "text",
|
85 |
-
"text": text_prompt,
|
86 |
-
},
|
87 |
-
]
|
88 |
-
|
89 |
-
# Process images if provided
|
90 |
-
if image_base64 is not None:
|
91 |
-
image_base64 = (
|
92 |
-
image_base64
|
93 |
-
if isinstance(image_base64, list)
|
94 |
-
else [image_base64]
|
95 |
-
)
|
96 |
-
for img in image_base64:
|
97 |
-
if isinstance(img, Image.Image):
|
98 |
-
buffer = BytesIO()
|
99 |
-
img.save(buffer, format=img.format or "PNG")
|
100 |
-
buffer.seek(0)
|
101 |
-
image_binary = buffer.read()
|
102 |
-
img = base64.b64encode(image_binary).decode("utf-8")
|
103 |
-
elif (
|
104 |
-
len(os.path.splitext(img)) > 1
|
105 |
-
and os.path.splitext(img)[-1].lower() in self.image_formats
|
106 |
-
):
|
107 |
-
if not os.path.exists(img):
|
108 |
-
raise FileNotFoundError(f"Image file not found: {img}")
|
109 |
-
with open(img, "rb") as f:
|
110 |
-
img = base64.b64encode(f.read()).decode("utf-8")
|
111 |
-
|
112 |
-
content_user.append(
|
113 |
-
{
|
114 |
-
"type": "image_url",
|
115 |
-
"image_url": {"url": f"data:image/png;base64,{img}"},
|
116 |
-
}
|
117 |
-
)
|
118 |
-
|
119 |
-
payload = {
|
120 |
-
"messages": [
|
121 |
-
{"role": "system", "content": system_role},
|
122 |
-
{"role": "user", "content": content_user},
|
123 |
-
],
|
124 |
-
"temperature": 0.1,
|
125 |
-
"max_tokens": 500,
|
126 |
-
"top_p": 0.1,
|
127 |
-
"frequency_penalty": 0,
|
128 |
-
"presence_penalty": 0,
|
129 |
-
"stop": None,
|
130 |
-
}
|
131 |
-
payload.update({"model": self.model_name})
|
132 |
-
|
133 |
-
response = None
|
134 |
-
try:
|
135 |
-
response = self.completion_with_backoff(**payload)
|
136 |
-
response = response.choices[0].message.content
|
137 |
-
except Exception as e:
|
138 |
-
logger.error(f"Error GPTclint {self.endpoint} API call: {e}")
|
139 |
-
response = None
|
140 |
-
|
141 |
-
if self.verbose:
|
142 |
-
logger.info(f"Prompt: {text_prompt}")
|
143 |
-
logger.info(f"Response: {response}")
|
144 |
-
|
145 |
-
return response
|
146 |
-
|
147 |
from embodied_gen.utils.gpt_clients import GPT_CLIENT
|
148 |
|
149 |
print(GPT_CLIENT.api_version, GPT_CLIENT.model_name, GPT_CLIENT.endpoint)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
logging.basicConfig(level=logging.INFO)
|
5 |
logger = logging.getLogger(__name__)
|
6 |
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from embodied_gen.utils.gpt_clients import GPT_CLIENT
|
9 |
|
10 |
print(GPT_CLIENT.api_version, GPT_CLIENT.model_name, GPT_CLIENT.endpoint)
|
embodied_gen/validators/urdf_convertor.py
CHANGED
@@ -366,6 +366,9 @@ class URDFGenerator(object):
|
|
366 |
image_path = combine_images_to_base64(image_path)
|
367 |
|
368 |
response = self.gpt_client.query(text_prompt, image_path)
|
|
|
|
|
|
|
369 |
if response is None:
|
370 |
asset_attrs = {
|
371 |
"category": category.lower(),
|
|
|
366 |
image_path = combine_images_to_base64(image_path)
|
367 |
|
368 |
response = self.gpt_client.query(text_prompt, image_path)
|
369 |
+
print("text_prompt: ", text_prompt)
|
370 |
+
print("image_path: ", image_path)
|
371 |
+
print("response: ", response)
|
372 |
if response is None:
|
373 |
asset_attrs = {
|
374 |
"category": category.lower(),
|