Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,522 Bytes
f4cccb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import logging
import os
import random
from typing import List, Tuple
import fire
import numpy as np
import torch
from diffusers.utils import make_image_grid
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import (
StableDiffusionXLControlNetImg2ImgPipeline,
)
from PIL import Image, ImageEnhance, ImageFilter
from torchvision import transforms
from embodied_gen.data.datasets import Asset3dGenDataset
from embodied_gen.models.texture_model import build_texture_gen_pipe
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_init_noise_image(image: Image.Image) -> Image.Image:
blurred_image = image.convert("L").filter(
ImageFilter.GaussianBlur(radius=3)
)
enhancer = ImageEnhance.Contrast(blurred_image)
image_decreased_contrast = enhancer.enhance(factor=0.5)
return image_decreased_contrast
def infer_pipe(
index_file: str,
controlnet_ckpt: str = None,
uid: str = None,
prompt: str = None,
controlnet_cond_scale: float = 0.4,
control_guidance_end: float = 0.9,
strength: float = 1.0,
num_inference_steps: int = 50,
guidance_scale: float = 10,
ip_adapt_scale: float = 0,
ip_img_path: str = None,
sub_idxs: List[List[int]] = None,
num_images_per_prompt: int = 3, # increase if want similar images.
device: str = "cuda",
save_dir: str = "infer_vis",
seed: int = None,
target_hw: tuple[int, int] = (512, 512),
pipeline: StableDiffusionXLControlNetImg2ImgPipeline = None,
) -> str:
# sub_idxs = [[0, 1, 2], [3, 4, 5]] # None for single image.
if sub_idxs is None:
sub_idxs = [[random.randint(0, 5)]] # 6 views.
target_hw = [2 * size for size in target_hw]
transform_list = [
transforms.Resize(
target_hw, interpolation=transforms.InterpolationMode.BILINEAR
),
transforms.CenterCrop(target_hw),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
image_transform = transforms.Compose(transform_list)
control_transform = transforms.Compose(transform_list[:-1])
grid_hw = (target_hw[0] * len(sub_idxs), target_hw[1] * len(sub_idxs[0]))
dataset = Asset3dGenDataset(
index_file, target_hw=grid_hw, sub_idxs=sub_idxs
)
if uid is None:
uid = random.choice(list(dataset.meta_info.keys()))
if prompt is None:
prompt = dataset.meta_info[uid]["capture"]
if isinstance(prompt, List) or isinstance(prompt, Tuple):
prompt = ", ".join(map(str, prompt))
# prompt += "high quality, ultra-clear, high resolution, best quality, 4k"
# prompt += "高品质,清晰,细节"
prompt += ", high quality, high resolution, best quality"
# prompt += ", with diffuse lighting, showing no reflections."
logger.info(f"Inference with prompt: {prompt}")
negative_prompt = "nsfw,阴影,低分辨率,伪影、模糊,霓虹灯,高光,镜面反射"
control_image = dataset.fetch_sample_grid_images(
uid,
attrs=["image_view_normal", "image_position", "image_mask"],
sub_idxs=sub_idxs,
transform=control_transform,
)
color_image = dataset.fetch_sample_grid_images(
uid,
attrs=["image_color"],
sub_idxs=sub_idxs,
transform=image_transform,
)
normal_pil, position_pil, mask_pil, color_pil = dataset.visualize_item(
control_image,
color_image,
save_dir=save_dir,
)
if pipeline is None:
pipeline = build_texture_gen_pipe(
base_ckpt_dir="./weights",
controlnet_ckpt=controlnet_ckpt,
ip_adapt_scale=ip_adapt_scale,
device=device,
)
if ip_adapt_scale > 0 and ip_img_path is not None and len(ip_img_path) > 0:
ip_image = Image.open(ip_img_path).convert("RGB")
ip_image = ip_image.resize(target_hw[::-1])
ip_image = [ip_image]
pipeline.set_ip_adapter_scale([ip_adapt_scale])
else:
ip_image = None
generator = None
if seed is not None:
generator = torch.Generator(device).manual_seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
init_image = get_init_noise_image(normal_pil)
# init_image = get_init_noise_image(color_pil)
images = []
row_num, col_num = 2, 3
img_save_paths = []
while len(images) < col_num:
image = pipeline(
prompt=prompt,
image=init_image,
controlnet_conditioning_scale=controlnet_cond_scale,
control_guidance_end=control_guidance_end,
strength=strength,
control_image=control_image[None, ...],
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images_per_prompt,
ip_adapter_image=ip_image,
generator=generator,
).images
images.extend(image)
grid_image = [normal_pil, position_pil, color_pil] + images[:col_num]
# save_dir = os.path.join(save_dir, uid)
os.makedirs(save_dir, exist_ok=True)
for idx in range(col_num):
rgba_image = Image.merge("RGBA", (*images[idx].split(), mask_pil))
img_save_path = os.path.join(save_dir, f"color_sample{idx}.png")
rgba_image.save(img_save_path)
img_save_paths.append(img_save_path)
sub_idxs = "_".join(
[str(item) for sublist in sub_idxs for item in sublist]
)
save_path = os.path.join(
save_dir, f"sample_idx{str(sub_idxs)}_ip{ip_adapt_scale}.jpg"
)
make_image_grid(grid_image, row_num, col_num).save(save_path)
logger.info(f"Visualize in {save_path}")
return img_save_paths
def entrypoint() -> None:
fire.Fire(infer_pipe)
if __name__ == "__main__":
entrypoint()
|