File size: 5,258 Bytes
f4cccb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.


import argparse
import logging
import math
import os

import cv2
import numpy as np
import spaces
import torch
from tqdm import tqdm
from embodied_gen.data.utils import (
    CameraSetting,
    init_kal_camera,
    normalize_vertices_array,
)
from embodied_gen.models.gs_model import GaussianOperator

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser(description="Render GS color images")

    parser.add_argument(
        "--input_gs", type=str, help="Input render GS.ply path."
    )
    parser.add_argument(
        "--output_path",
        type=str,
        help="Output grid image path for rendered GS color images.",
    )
    parser.add_argument(
        "--num_images", type=int, default=6, help="Number of images to render."
    )
    parser.add_argument(
        "--elevation",
        type=float,
        nargs="+",
        default=[20.0, -10.0],
        help="Elevation angles for the camera (default: [20.0, -10.0])",
    )
    parser.add_argument(
        "--distance",
        type=float,
        default=5,
        help="Camera distance (default: 5)",
    )
    parser.add_argument(
        "--resolution_hw",
        type=int,
        nargs=2,
        default=(512, 512),
        help="Resolution of the output images (default: (512, 512))",
    )
    parser.add_argument(
        "--fov",
        type=float,
        default=30,
        help="Field of view in degrees (default: 30)",
    )
    parser.add_argument(
        "--device",
        type=str,
        choices=["cpu", "cuda"],
        default="cuda",
        help="Device to run on (default: `cuda`)",
    )
    parser.add_argument(
        "--image_size",
        type=int,
        default=512,
        help="Output image size for single view in color grid (default: 512)",
    )

    args, unknown = parser.parse_known_args()

    return args


def load_gs_model(
    input_gs: str, pre_quat: list[float] = [0.0, 0.7071, 0.0, -0.7071]
) -> GaussianOperator:
    gs_model = GaussianOperator.load_from_ply(input_gs)
    # Normalize vertices to [-1, 1], center to (0, 0, 0).
    _, scale, center = normalize_vertices_array(gs_model._means)
    scale, center = float(scale), center.tolist()
    transpose = [*[-v for v in center], *pre_quat]
    instance_pose = torch.tensor(transpose).to(gs_model.device)
    gs_model = gs_model.get_gaussians(instance_pose=instance_pose)
    gs_model.rescale(scale)

    return gs_model


@spaces.GPU
def entrypoint(input_gs: str = None, output_path: str = None) -> None:
    args = parse_args()
    if isinstance(input_gs, str):
        args.input_gs = input_gs
    if isinstance(output_path, str):
        args.output_path = output_path

    # Setup camera parameters
    camera_params = CameraSetting(
        num_images=args.num_images,
        elevation=args.elevation,
        distance=args.distance,
        resolution_hw=args.resolution_hw,
        fov=math.radians(args.fov),
        device=args.device,
    )
    camera = init_kal_camera(camera_params)
    matrix_mv = camera.view_matrix()  # (n_cam 4 4) world2cam
    matrix_mv[:, :3, 3] = -matrix_mv[:, :3, 3]
    w2cs = matrix_mv.to(camera_params.device)
    c2ws = [torch.linalg.inv(matrix) for matrix in w2cs]
    Ks = torch.tensor(camera_params.Ks).to(camera_params.device)

    # Load GS model and normalize.
    gs_model = load_gs_model(args.input_gs, pre_quat=[0.0, 0.0, 1.0, 0.0])

    # Render GS color images.
    images = []
    for idx in tqdm(range(len(c2ws)), desc="Rendering GS"):
        result = gs_model.render(
            c2ws[idx],
            Ks=Ks,
            image_width=camera_params.resolution_hw[1],
            image_height=camera_params.resolution_hw[0],
        )
        color = cv2.resize(
            result.rgba,
            (args.image_size, args.image_size),
            interpolation=cv2.INTER_AREA,
        )
        images.append(color)

    # Cat color images into grid image and save.
    select_idxs = [[0, 2, 1], [5, 4, 3]]  # fix order for 6 views
    grid_image = []
    for row_idxs in select_idxs:
        row_image = []
        for row_idx in row_idxs:
            row_image.append(images[row_idx])
        row_image = np.concatenate(row_image, axis=1)
        grid_image.append(row_image)

    grid_image = np.concatenate(grid_image, axis=0)
    os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
    cv2.imwrite(args.output_path, grid_image)
    logger.info(f"Saved grid image to {args.output_path}")


if __name__ == "__main__":
    entrypoint()