File size: 6,385 Bytes
f4cccb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee63191
c6c24ac
ee63191
bad2d4f
22e4e0c
c6c24ac
f4cccb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee63191
f4cccb0
 
 
ee63191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4cccb0
 
 
 
 
9d0feb9
ee63191
f4cccb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efa2e5d
f4cccb0
 
 
 
 
 
 
 
 
 
 
9d0feb9
ee63191
f4cccb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22e4e0c
f4cccb0
 
c6c24ac
f4cccb0
 
c6c24ac
22e4e0c
 
 
 
 
 
f4cccb0
 
 
 
 
 
 
22e4e0c
f4cccb0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.


import logging
import os
import random
import subprocess

import numpy as np
import torch
from diffusers import (
    AutoencoderKL,
    EulerDiscreteScheduler,
    UNet2DConditionModel,
)
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.unet_2d_condition import (
    UNet2DConditionModel as UNet2DConditionModelIP,
)
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import (
    StableDiffusionXLPipeline,
)
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import (  # noqa
    StableDiffusionXLPipeline as StableDiffusionXLPipelineIP,
)
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


__all__ = [
    "build_text2img_ip_pipeline",
    "build_text2img_pipeline",
    "text2img_gen",
    "download_kolors_weights",
]


def download_kolors_weights(local_dir: str = "weights/Kolors") -> None:
    logger.info(f"Download kolors weights from huggingface...")
    os.makedirs(local_dir, exist_ok=True)
    subprocess.run(
        [
            "huggingface-cli",
            "download",
            "--resume-download",
            "Kwai-Kolors/Kolors",
            "--local-dir",
            local_dir,
        ],
        check=True,
    )

    ip_adapter_path = f"{local_dir}/../Kolors-IP-Adapter-Plus"
    subprocess.run(
        [
            "huggingface-cli",
            "download",
            "--resume-download",
            "Kwai-Kolors/Kolors-IP-Adapter-Plus",
            "--local-dir",
            ip_adapter_path,
        ],
        check=True,
    )


def build_text2img_ip_pipeline(
    ckpt_dir: str,
    ref_scale: float,
    device: str = "cuda",
) -> StableDiffusionXLPipelineIP:
    download_kolors_weights(ckpt_dir)

    text_encoder = ChatGLMModel.from_pretrained(
        f"{ckpt_dir}/text_encoder", torch_dtype=torch.float16
    ).half()
    tokenizer = ChatGLMTokenizer.from_pretrained(f"{ckpt_dir}/text_encoder")
    vae = AutoencoderKL.from_pretrained(
        f"{ckpt_dir}/vae", revision=None
    ).half()
    scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
    unet = UNet2DConditionModelIP.from_pretrained(
        f"{ckpt_dir}/unet", revision=None
    ).half()
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(
        f"{ckpt_dir}/../Kolors-IP-Adapter-Plus/image_encoder",
        ignore_mismatched_sizes=True,
    ).to(dtype=torch.float16)
    clip_image_processor = CLIPImageProcessor(size=336, crop_size=336)

    pipe = StableDiffusionXLPipelineIP(
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
        image_encoder=image_encoder,
        feature_extractor=clip_image_processor,
        force_zeros_for_empty_prompt=False,
    )

    if hasattr(pipe.unet, "encoder_hid_proj"):
        pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj

    pipe.load_ip_adapter(
        f"{ckpt_dir}/../Kolors-IP-Adapter-Plus",
        subfolder="",
        weight_name=["ip_adapter_plus_general.bin"],
    )
    pipe.set_ip_adapter_scale([ref_scale])

    pipe = pipe.to(device)
    pipe.image_encoder = pipe.image_encoder.to(device)
    # pipe.enable_model_cpu_offload()
    # pipe.enable_xformers_memory_efficient_attention()
    # pipe.enable_vae_slicing()

    return pipe


def build_text2img_pipeline(
    ckpt_dir: str,
    device: str = "cuda",
) -> StableDiffusionXLPipeline:
    download_kolors_weights(ckpt_dir)

    text_encoder = ChatGLMModel.from_pretrained(
        f"{ckpt_dir}/text_encoder", torch_dtype=torch.float16
    ).half()
    tokenizer = ChatGLMTokenizer.from_pretrained(f"{ckpt_dir}/text_encoder")
    vae = AutoencoderKL.from_pretrained(
        f"{ckpt_dir}/vae", revision=None
    ).half()
    scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
    unet = UNet2DConditionModel.from_pretrained(
        f"{ckpt_dir}/unet", revision=None
    ).half()
    pipe = StableDiffusionXLPipeline(
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
        force_zeros_for_empty_prompt=False,
    )
    pipe = pipe.to(device)
    # pipe.enable_model_cpu_offload()
    # pipe.enable_xformers_memory_efficient_attention()

    return pipe


def text2img_gen(
    prompt: str,
    n_sample: int,
    guidance_scale: float,
    pipeline: StableDiffusionXLPipeline | StableDiffusionXLPipelineIP,
    ip_image: Image.Image | str = None,
    image_wh: tuple[int, int] = [1024, 1024],
    infer_step: int = 50,
    ip_image_size: int = 512,
    seed: int = None,
) -> list[Image.Image]:
    prompt = "Single " + prompt + ", in the center of the image"
    prompt += ", high quality, high resolution, best quality, white background, 3D style"  # noqa
    logger.info(f"Processing prompt: {prompt}")

    generator = None
    if seed is not None:
        generator = torch.Generator(pipeline.device).manual_seed(seed)
        torch.manual_seed(seed)
        np.random.seed(seed)
        random.seed(seed)

    kwargs = dict(
        prompt=prompt,
        height=image_wh[1],
        width=image_wh[0],
        num_inference_steps=infer_step,
        guidance_scale=guidance_scale,
        num_images_per_prompt=n_sample,
        generator=generator,
    )
    if ip_image is not None:
        if isinstance(ip_image, str):
            ip_image = Image.open(ip_image)
        ip_image = ip_image.resize((ip_image_size, ip_image_size))
        kwargs.update(ip_adapter_image=[ip_image])

    return pipeline(**kwargs).images