File size: 5,366 Bytes
f4cccb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.


import logging
import os
from typing import Union

import numpy as np
import spaces
import torch
from huggingface_hub import snapshot_download
from PIL import Image
from embodied_gen.data.utils import get_images_from_grid

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)


__all__ = [
    "ImageStableSR",
    "ImageRealESRGAN",
]


class ImageStableSR:
    """Super-resolution image upscaler using Stable Diffusion x4 upscaling model from StabilityAI."""

    def __init__(
        self,
        model_path: str = "stabilityai/stable-diffusion-x4-upscaler",
        device="cuda",
    ) -> None:
        from diffusers import StableDiffusionUpscalePipeline

        self.up_pipeline_x4 = StableDiffusionUpscalePipeline.from_pretrained(
            model_path,
            torch_dtype=torch.float16,
        ).to(device)
        self.up_pipeline_x4.set_progress_bar_config(disable=True)
        # self.up_pipeline_x4.enable_model_cpu_offload()

    @spaces.GPU
    def __call__(
        self,
        image: Union[Image.Image, np.ndarray],
        prompt: str = "",
        infer_step: int = 20,
    ) -> Image.Image:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        image = image.convert("RGB")

        with torch.no_grad():
            upscaled_image = self.up_pipeline_x4(
                image=image,
                prompt=[prompt],
                num_inference_steps=infer_step,
            ).images[0]

        return upscaled_image


class ImageRealESRGAN:
    """A wrapper for Real-ESRGAN-based image super-resolution.

    This class uses the RealESRGAN model to perform image upscaling,
    typically by a factor of 4.

    Attributes:
        outscale (int): The output image scale factor (e.g., 2, 4).
        model_path (str): Path to the pre-trained model weights.
    """

    def __init__(self, outscale: int, model_path: str = None) -> None:
        # monkey patch to support torchvision>=0.16
        import torchvision
        from packaging import version

        if version.parse(torchvision.__version__) > version.parse("0.16"):
            import sys
            import types

            import torchvision.transforms.functional as TF

            functional_tensor = types.ModuleType(
                "torchvision.transforms.functional_tensor"
            )
            functional_tensor.rgb_to_grayscale = TF.rgb_to_grayscale
            sys.modules["torchvision.transforms.functional_tensor"] = (
                functional_tensor
            )

        self.outscale = outscale
        self.upsampler = None

        if model_path is None:
            suffix = "super_resolution"
            model_path = snapshot_download(
                repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
            )
            model_path = os.path.join(
                model_path, suffix, "RealESRGAN_x4plus.pth"
            )

        self.model_path = model_path

    def _lazy_init(self):
        if self.upsampler is None:
            from basicsr.archs.rrdbnet_arch import RRDBNet
            from realesrgan import RealESRGANer

            model = RRDBNet(
                num_in_ch=3,
                num_out_ch=3,
                num_feat=64,
                num_block=23,
                num_grow_ch=32,
                scale=4,
            )

            self.upsampler = RealESRGANer(
                scale=4,
                model_path=self.model_path,
                model=model,
                pre_pad=0,
                half=True,
            )

    @spaces.GPU
    def __call__(self, image: Union[Image.Image, np.ndarray]) -> Image.Image:
        self._lazy_init()

        if isinstance(image, Image.Image):
            image = np.array(image)

        with torch.no_grad():
            output, _ = self.upsampler.enhance(image, outscale=self.outscale)

        return Image.fromarray(output)


if __name__ == "__main__":
    color_path = "outputs/texture_mesh_gen/multi_view/color_sample0.png"

    # Use RealESRGAN_x4plus for x4 (512->2048) image super resolution.
    super_model = ImageRealESRGAN(outscale=4)
    multiviews = get_images_from_grid(color_path, img_size=512)
    multiviews = [super_model(img.convert("RGB")) for img in multiviews]
    for idx, img in enumerate(multiviews):
        img.save(f"sr{idx}.png")

    # # Use stable diffusion for x4 (512->2048) image super resolution.
    # super_model = ImageStableSR()
    # multiviews = get_images_from_grid(color_path, img_size=512)
    # multiviews = [super_model(img) for img in multiviews]
    # for idx, img in enumerate(multiviews):
    #     img.save(f"sr_stable{idx}.png")