Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,754 Bytes
f4cccb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import os
from typing import Union
import cv2
import numpy as np
import spaces
import torch
from diffusers import (
EulerAncestralDiscreteScheduler,
StableDiffusionInstructPix2PixPipeline,
)
from huggingface_hub import snapshot_download
from PIL import Image
from embodied_gen.models.segment_model import RembgRemover
__all__ = [
"DelightingModel",
]
class DelightingModel(object):
"""A model to remove the lighting in image space.
This model is encapsulated based on the Hunyuan3D-Delight model
from https://huggingface.co/tencent/Hunyuan3D-2/tree/main/hunyuan3d-delight-v2-0 # noqa
Attributes:
image_guide_scale (float): Weight of image guidance in diffusion process.
text_guide_scale (float): Weight of text (prompt) guidance in diffusion process.
num_infer_step (int): Number of inference steps for diffusion model.
mask_erosion_size (int): Size of erosion kernel for alpha mask cleanup.
device (str): Device used for inference, e.g., 'cuda' or 'cpu'.
seed (int): Random seed for diffusion model reproducibility.
model_path (str): Filesystem path to pretrained model weights.
pipeline: Lazy-loaded diffusion pipeline instance.
"""
def __init__(
self,
model_path: str = None,
num_infer_step: int = 50,
mask_erosion_size: int = 3,
image_guide_scale: float = 1.5,
text_guide_scale: float = 1.0,
device: str = "cuda",
seed: int = 0,
) -> None:
self.image_guide_scale = image_guide_scale
self.text_guide_scale = text_guide_scale
self.num_infer_step = num_infer_step
self.mask_erosion_size = mask_erosion_size
self.kernel = np.ones(
(self.mask_erosion_size, self.mask_erosion_size), np.uint8
)
self.seed = seed
self.device = device
self.pipeline = None # lazy load model adapt to @spaces.GPU
if model_path is None:
suffix = "hunyuan3d-delight-v2-0"
model_path = snapshot_download(
repo_id="tencent/Hunyuan3D-2", allow_patterns=f"{suffix}/*"
)
model_path = os.path.join(model_path, suffix)
self.model_path = model_path
def _lazy_init_pipeline(self):
if self.pipeline is None:
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
self.model_path,
torch_dtype=torch.float16,
safety_checker=None,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config
)
pipeline.set_progress_bar_config(disable=True)
pipeline.to(self.device, torch.float16)
self.pipeline = pipeline
def recenter_image(
self, image: Image.Image, border_ratio: float = 0.2
) -> Image.Image:
if image.mode == "RGB":
return image
elif image.mode == "L":
image = image.convert("RGB")
return image
alpha_channel = np.array(image)[:, :, 3]
non_zero_indices = np.argwhere(alpha_channel > 0)
if non_zero_indices.size == 0:
raise ValueError("Image is fully transparent")
min_row, min_col = non_zero_indices.min(axis=0)
max_row, max_col = non_zero_indices.max(axis=0)
cropped_image = image.crop(
(min_col, min_row, max_col + 1, max_row + 1)
)
width, height = cropped_image.size
border_width = int(width * border_ratio)
border_height = int(height * border_ratio)
new_width = width + 2 * border_width
new_height = height + 2 * border_height
square_size = max(new_width, new_height)
new_image = Image.new(
"RGBA", (square_size, square_size), (255, 255, 255, 0)
)
paste_x = (square_size - new_width) // 2 + border_width
paste_y = (square_size - new_height) // 2 + border_height
new_image.paste(cropped_image, (paste_x, paste_y))
return new_image
@spaces.GPU
@torch.no_grad()
def __call__(
self,
image: Union[str, np.ndarray, Image.Image],
preprocess: bool = False,
target_wh: tuple[int, int] = None,
) -> Image.Image:
self._lazy_init_pipeline()
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
if preprocess:
bg_remover = RembgRemover()
image = bg_remover(image)
image = self.recenter_image(image)
if target_wh is not None:
image = image.resize(target_wh)
else:
target_wh = image.size
image_array = np.array(image)
assert image_array.shape[-1] == 4, "Image must have alpha channel"
raw_alpha_channel = image_array[:, :, 3]
alpha_channel = cv2.erode(raw_alpha_channel, self.kernel, iterations=1)
image_array[alpha_channel == 0, :3] = 255 # must be white background
image_array[:, :, 3] = alpha_channel
image = self.pipeline(
prompt="",
image=Image.fromarray(image_array).convert("RGB"),
generator=torch.manual_seed(self.seed),
num_inference_steps=self.num_infer_step,
image_guidance_scale=self.image_guide_scale,
guidance_scale=self.text_guide_scale,
).images[0]
alpha_channel = Image.fromarray(alpha_channel)
rgba_image = image.convert("RGBA").resize(target_wh)
rgba_image.putalpha(alpha_channel)
return rgba_image
if __name__ == "__main__":
delighting_model = DelightingModel()
image_path = "apps/assets/example_image/sample_12.jpg"
image = delighting_model(
image_path, preprocess=True, target_wh=(512, 512)
) # noqa
image.save("delight.png")
# image_path = "embodied_gen/scripts/test_robot.png"
# image = delighting_model(image_path)
# image.save("delighting_image_a2.png")
|