Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler | |
from diffusers.utils import export_to_video | |
from transformers import CLIPVisionModel | |
import gradio as gr | |
import tempfile | |
import spaces | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
from PIL import Image | |
import random | |
import logging | |
import gc | |
import time | |
import hashlib | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
from functools import wraps | |
import threading | |
import os | |
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ค์ | |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512' | |
# ๋ก๊น ์ค์ | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# ์ค์ ๊ด๋ฆฌ | |
class VideoGenerationConfig: | |
model_id: str = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" | |
lora_repo_id: str = "Kijai/WanVideo_comfy" | |
lora_filename: str = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" | |
mod_value: int = 32 | |
default_height: int = 512 | |
default_width: int = 512 # Zero GPU ํ๊ฒฝ์ ์ํด ๊ธฐ๋ณธ๊ฐ ์์ | |
max_area: float = 480.0 * 832.0 | |
slider_min_h: int = 128 | |
slider_max_h: int = 832 # Zero GPU ํ๊ฒฝ์ ์ํด ์์ | |
slider_min_w: int = 128 | |
slider_max_w: int = 832 # Zero GPU ํ๊ฒฝ์ ์ํด ์์ | |
fixed_fps: int = 24 | |
min_frames: int = 8 | |
max_frames: int = 81 | |
default_prompt: str = "make this image come alive, cinematic motion, smooth animation" | |
default_negative_prompt: str = "static, blurred, low quality, watermark, text" | |
# GPU ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ ์ค์ | |
enable_model_cpu_offload: bool = True | |
enable_vae_slicing: bool = True | |
enable_vae_tiling: bool = True | |
def max_duration(self): | |
"""์ต๋ ํ์ฉ duration (์ด)""" | |
return self.max_frames / self.fixed_fps | |
def min_duration(self): | |
"""์ต์ ํ์ฉ duration (์ด)""" | |
return self.min_frames / self.fixed_fps | |
config = VideoGenerationConfig() | |
MAX_SEED = np.iinfo(np.int32).max | |
# ๊ธ๋ก๋ฒ ๋ฝ (๋์ ์คํ ๋ฐฉ์ง) | |
generation_lock = threading.Lock() | |
# ์ฑ๋ฅ ์ธก์ ๋ฐ์ฝ๋ ์ดํฐ | |
def measure_time(func): | |
def wrapper(*args, **kwargs): | |
start = time.time() | |
result = func(*args, **kwargs) | |
logger.info(f"{func.__name__} took {time.time()-start:.2f}s") | |
return result | |
return wrapper | |
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์ | |
def clear_gpu_memory(): | |
"""๊ฐ๋ ฅํ GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ""" | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
gc.collect() | |
# GPU ๋ฉ๋ชจ๋ฆฌ ์ํ ๋ก๊น | |
allocated = torch.cuda.memory_allocated() / 1024**3 | |
reserved = torch.cuda.memory_reserved() / 1024**3 | |
logger.info(f"GPU Memory - Allocated: {allocated:.2f}GB, Reserved: {reserved:.2f}GB") | |
# ๋ชจ๋ธ ๊ด๋ฆฌ์ (์ฑ๊ธํค ํจํด) | |
class ModelManager: | |
_instance = None | |
_lock = threading.Lock() | |
def __new__(cls): | |
if cls._instance is None: | |
with cls._lock: | |
if cls._instance is None: | |
cls._instance = super().__new__(cls) | |
return cls._instance | |
def __init__(self): | |
if not hasattr(self, '_initialized'): | |
self._pipe = None | |
self._is_loaded = False | |
self._initialized = True | |
def pipe(self): | |
if not self._is_loaded: | |
self._load_model() | |
return self._pipe | |
def _load_model(self): | |
"""๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ์ธ ๋ชจ๋ธ ๋ก๋ฉ""" | |
with self._lock: | |
if self._is_loaded: | |
return | |
try: | |
logger.info("Loading model with memory optimizations...") | |
clear_gpu_memory() | |
# ๋ชจ๋ธ ์ปดํฌ๋ํธ ๋ก๋ (๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ) | |
with torch.cuda.amp.autocast(enabled=False): | |
image_encoder = CLIPVisionModel.from_pretrained( | |
config.model_id, | |
subfolder="image_encoder", | |
torch_dtype=torch.float16, # float32 ๋์ float16 ์ฌ์ฉ | |
low_cpu_mem_usage=True | |
) | |
vae = AutoencoderKLWan.from_pretrained( | |
config.model_id, | |
subfolder="vae", | |
torch_dtype=torch.float16, # float32 ๋์ float16 ์ฌ์ฉ | |
low_cpu_mem_usage=True | |
) | |
self._pipe = WanImageToVideoPipeline.from_pretrained( | |
config.model_id, | |
vae=vae, | |
image_encoder=image_encoder, | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
use_safetensors=True | |
) | |
# ์ค์ผ์ค๋ฌ ์ค์ | |
self._pipe.scheduler = UniPCMultistepScheduler.from_config( | |
self._pipe.scheduler.config, flow_shift=8.0 | |
) | |
# LoRA ๋ก๋ | |
causvid_path = hf_hub_download( | |
repo_id=config.lora_repo_id, filename=config.lora_filename | |
) | |
self._pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") | |
self._pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95]) | |
self._pipe.fuse_lora() | |
# GPU ์ต์ ํ ์ค์ | |
if hasattr(spaces, 'GPU'): # Zero GPU ํ๊ฒฝ | |
self._pipe.enable_model_cpu_offload() | |
logger.info("CPU offload enabled for Zero GPU") | |
elif config.enable_model_cpu_offload: | |
self._pipe.enable_model_cpu_offload() | |
else: | |
self._pipe.to("cuda") | |
if config.enable_vae_slicing: | |
self._pipe.enable_vae_slicing() | |
if config.enable_vae_tiling: | |
self._pipe.enable_vae_tiling() | |
# xFormers ๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ์ธ attention ํ์ฑํ (๊ฐ๋ฅํ ๊ฒฝ์ฐ) | |
try: | |
self._pipe.enable_xformers_memory_efficient_attention() | |
logger.info("xFormers memory efficient attention enabled") | |
except: | |
logger.info("xFormers not available, using default attention") | |
self._is_loaded = True | |
logger.info("Model loaded successfully with optimizations") | |
clear_gpu_memory() | |
except Exception as e: | |
logger.error(f"Error loading model: {e}") | |
self._is_loaded = False | |
clear_gpu_memory() | |
raise | |
def unload_model(self): | |
"""๋ชจ๋ธ ์ธ๋ก๋ ๋ฐ ๋ฉ๋ชจ๋ฆฌ ํด์ """ | |
with self._lock: | |
if self._pipe is not None: | |
del self._pipe | |
self._pipe = None | |
self._is_loaded = False | |
clear_gpu_memory() | |
logger.info("Model unloaded and memory cleared") | |
# ์ฑ๊ธํค ์ธ์คํด์ค | |
model_manager = ModelManager() | |
# ๋น๋์ค ์์ฑ๊ธฐ ํด๋์ค | |
class VideoGenerator: | |
def __init__(self, config: VideoGenerationConfig, model_manager: ModelManager): | |
self.config = config | |
self.model_manager = model_manager | |
def calculate_dimensions(self, image: Image.Image) -> Tuple[int, int]: | |
orig_w, orig_h = image.size | |
if orig_w <= 0 or orig_h <= 0: | |
return self.config.default_height, self.config.default_width | |
aspect_ratio = orig_h / orig_w | |
# Zero GPU ํ๊ฒฝ์์๋ ๋ ์์ max_area ์ฌ์ฉ | |
if hasattr(spaces, 'GPU'): | |
max_area = 640.0 * 640.0 # 409,600 pixels | |
else: | |
max_area = self.config.max_area | |
calc_h = round(np.sqrt(max_area * aspect_ratio)) | |
calc_w = round(np.sqrt(max_area / aspect_ratio)) | |
calc_h = max(self.config.mod_value, (calc_h // self.config.mod_value) * self.config.mod_value) | |
calc_w = max(self.config.mod_value, (calc_w // self.config.mod_value) * self.config.mod_value) | |
# Zero GPU ํ๊ฒฝ์์ ์ถ๊ฐ ์ ํ | |
if hasattr(spaces, 'GPU'): | |
max_dim = 832 | |
new_h = int(np.clip(calc_h, self.config.slider_min_h, min(max_dim, self.config.slider_max_h))) | |
new_w = int(np.clip(calc_w, self.config.slider_min_w, min(max_dim, self.config.slider_max_w))) | |
else: | |
new_h = int(np.clip(calc_h, self.config.slider_min_h, | |
(self.config.slider_max_h // self.config.mod_value) * self.config.mod_value)) | |
new_w = int(np.clip(calc_w, self.config.slider_min_w, | |
(self.config.slider_max_w // self.config.mod_value) * self.config.mod_value)) | |
return new_h, new_w | |
def validate_inputs(self, image: Image.Image, prompt: str, height: int, | |
width: int, duration: float, steps: int) -> Tuple[bool, Optional[str]]: | |
if image is None: | |
return False, "๐ผ๏ธ Please upload an input image" | |
if not prompt or len(prompt.strip()) == 0: | |
return False, "โ๏ธ Please provide a prompt" | |
if len(prompt) > 500: | |
return False, "โ ๏ธ Prompt is too long (max 500 characters)" | |
# ์ ํํ duration ๋ฒ์ ์ฒดํฌ | |
min_duration = self.config.min_duration | |
max_duration = self.config.max_duration | |
if duration < min_duration: | |
return False, f"โฑ๏ธ Duration too short (min {min_duration:.1f}s)" | |
if duration > max_duration: | |
return False, f"โฑ๏ธ Duration too long (max {max_duration:.1f}s)" | |
# Zero GPU ํ๊ฒฝ์์๋ ๋ ๋ณด์์ ์ธ ์ ํ ์ ์ฉ | |
if hasattr(spaces, 'GPU'): # Spaces ํ๊ฒฝ ์ฒดํฌ | |
if duration > 2.5: # Zero GPU์์๋ 2.5์ด๋ก ์ ํ | |
return False, "โฑ๏ธ In Zero GPU environment, duration is limited to 2.5s for stability" | |
# ํฝ์ ์ ๊ธฐ๋ฐ ์ ํ (640x640 = 409,600 ํฝ์ ) | |
max_pixels = 640 * 640 | |
if height * width > max_pixels: | |
return False, f"๐ In Zero GPU environment, total pixels limited to {max_pixels:,} (e.g., 640ร640, 512ร832)" | |
if height > 832 or width > 832: # ํ ๋ณ์ ์ต๋ ๊ธธ์ด | |
return False, "๐ In Zero GPU environment, maximum dimension is 832 pixels" | |
# GPU ๋ฉ๋ชจ๋ฆฌ ์ฒดํฌ | |
if torch.cuda.is_available(): | |
try: | |
free_memory = torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated() | |
required_memory = (height * width * 3 * 8 * duration * self.config.fixed_fps) / (1024**3) | |
if free_memory < required_memory * 2: | |
clear_gpu_memory() | |
return False, "โ ๏ธ Not enough GPU memory. Try smaller dimensions or shorter duration." | |
except: | |
pass # GPU ์ฒดํฌ ์คํจ์ ๊ณ์ ์งํ | |
return True, None | |
def generate_unique_filename(self, seed: int) -> str: | |
timestamp = int(time.time()) | |
unique_str = f"{timestamp}_{seed}_{random.randint(1000, 9999)}" | |
hash_obj = hashlib.md5(unique_str.encode()) | |
return f"video_{hash_obj.hexdigest()[:8]}.mp4" | |
video_generator = VideoGenerator(config, model_manager) | |
# Gradio ํจ์๋ค | |
def handle_image_upload(image): | |
if image is None: | |
return gr.update(value=config.default_height), gr.update(value=config.default_width) | |
try: | |
if not isinstance(image, Image.Image): | |
raise ValueError("Invalid image format") | |
new_h, new_w = video_generator.calculate_dimensions(image) | |
return gr.update(value=new_h), gr.update(value=new_w) | |
except Exception as e: | |
logger.error(f"Error processing image: {e}") | |
gr.Warning("โ ๏ธ Error processing image") | |
return gr.update(value=config.default_height), gr.update(value=config.default_width) | |
def get_duration(input_image, prompt, height, width, negative_prompt, | |
duration_seconds, guidance_scale, steps, seed, randomize_seed, progress): | |
# Zero GPU ํ๊ฒฝ์์๋ ๋ ๋ณด์์ ์ธ ์๊ฐ ํ ๋น | |
base_duration = 60 | |
# ๋จ๊ณ๋ณ ์ถ๊ฐ ์๊ฐ | |
if steps > 8: | |
base_duration += 30 | |
elif steps > 4: | |
base_duration += 15 | |
# Duration๋ณ ์ถ๊ฐ ์๊ฐ | |
if duration_seconds > 2: | |
base_duration += 20 | |
elif duration_seconds > 1.5: | |
base_duration += 10 | |
# ํด์๋๋ณ ์ถ๊ฐ ์๊ฐ (ํฝ์ ์ ๊ธฐ๋ฐ) | |
pixels = height * width | |
if pixels > 400000: # 640x640 ๊ทผ์ฒ | |
base_duration += 20 | |
elif pixels > 250000: # 512x512 ๊ทผ์ฒ | |
base_duration += 10 | |
# Zero GPU ํ๊ฒฝ์์๋ ์ต๋ 90์ด๋ก ์ ํ | |
return min(base_duration, 90) | |
def generate_video(input_image, prompt, height, width, | |
negative_prompt=config.default_negative_prompt, | |
duration_seconds=1.5, guidance_scale=1, steps=4, | |
seed=42, randomize_seed=False, | |
progress=gr.Progress(track_tqdm=True)): | |
# ๋์ ์คํ ๋ฐฉ์ง | |
if not generation_lock.acquire(blocking=False): | |
raise gr.Error("โณ Another video is being generated. Please wait...") | |
try: | |
progress(0.1, desc="๐ Validating inputs...") | |
# Zero GPU ํ๊ฒฝ์์ ์ถ๊ฐ ๊ฒ์ฆ | |
if hasattr(spaces, 'GPU'): | |
logger.info(f"Zero GPU environment detected. Duration: {duration_seconds}s, Resolution: {height}x{width}, Pixels: {height*width:,}") | |
# ์ ๋ ฅ ๊ฒ์ฆ | |
is_valid, error_msg = video_generator.validate_inputs( | |
input_image, prompt, height, width, duration_seconds, steps | |
) | |
if not is_valid: | |
raise gr.Error(error_msg) | |
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ | |
clear_gpu_memory() | |
progress(0.2, desc="๐ฏ Preparing image...") | |
target_h = max(config.mod_value, (int(height) // config.mod_value) * config.mod_value) | |
target_w = max(config.mod_value, (int(width) // config.mod_value) * config.mod_value) | |
# ํ๋ ์ ์ ๊ณ์ฐ (Zero GPU ํ๊ฒฝ์์ ์ถ๊ฐ ์ ํ) | |
max_allowed_frames = int(2.5 * config.fixed_fps) if hasattr(spaces, 'GPU') else config.max_frames | |
num_frames = min( | |
int(round(duration_seconds * config.fixed_fps)), | |
max_allowed_frames | |
) | |
num_frames = np.clip(num_frames, config.min_frames, max_allowed_frames) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
# ์ด๋ฏธ์ง ๋ฆฌ์ฌ์ด์ฆ (๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ) | |
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS) | |
progress(0.3, desc="๐จ Loading model...") | |
pipe = model_manager.pipe | |
progress(0.4, desc="๐ฌ Generating video frames...") | |
# ๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ์ธ ์์ฑ | |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=True): | |
try: | |
output_frames_list = pipe( | |
image=resized_image, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=target_h, | |
width=target_w, | |
num_frames=num_frames, | |
guidance_scale=float(guidance_scale), | |
num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed), | |
return_dict=True | |
).frames[0] | |
except torch.cuda.OutOfMemoryError: | |
clear_gpu_memory() | |
raise gr.Error("๐พ GPU out of memory. Try smaller dimensions or shorter duration.") | |
except Exception as e: | |
logger.error(f"Generation error: {e}") | |
raise gr.Error(f"โ Generation failed: {str(e)}") | |
progress(0.9, desc="๐พ Saving video...") | |
filename = video_generator.generate_unique_filename(current_seed) | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
video_path = tmpfile.name | |
export_to_video(output_frames_list, video_path, fps=config.fixed_fps) | |
progress(1.0, desc="โจ Complete!") | |
logger.info(f"Video generated successfully: {num_frames} frames, {target_h}x{target_w}") | |
return video_path, current_seed | |
except Exception as e: | |
logger.error(f"Unexpected error: {e}") | |
raise | |
finally: | |
# ํญ์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ๋ฐ ๋ฝ ํด์ | |
generation_lock.release() | |
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ | |
if 'output_frames_list' in locals(): | |
del output_frames_list | |
if 'resized_image' in locals(): | |
del resized_image | |
clear_gpu_memory() | |
# ๊ฐ์ ๋ CSS ์คํ์ผ | |
css = """ | |
.container { | |
max-width: 1200px; | |
margin: auto; | |
padding: 20px; | |
} | |
.header { | |
text-align: center; | |
margin-bottom: 30px; | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
padding: 40px; | |
border-radius: 20px; | |
color: white; | |
box-shadow: 0 10px 30px rgba(0,0,0,0.2); | |
position: relative; | |
overflow: hidden; | |
} | |
.header::before { | |
content: ''; | |
position: absolute; | |
top: -50%; | |
left: -50%; | |
width: 200%; | |
height: 200%; | |
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%); | |
animation: pulse 4s ease-in-out infinite; | |
} | |
@keyframes pulse { | |
0%, 100% { transform: scale(1); opacity: 0.5; } | |
50% { transform: scale(1.1); opacity: 0.8; } | |
} | |
.header h1 { | |
font-size: 3em; | |
margin-bottom: 10px; | |
text-shadow: 2px 2px 4px rgba(0,0,0,0.3); | |
position: relative; | |
z-index: 1; | |
} | |
.header p { | |
font-size: 1.2em; | |
opacity: 0.95; | |
position: relative; | |
z-index: 1; | |
} | |
.gpu-status { | |
position: absolute; | |
top: 10px; | |
right: 10px; | |
background: rgba(0,0,0,0.3); | |
padding: 5px 15px; | |
border-radius: 20px; | |
font-size: 0.8em; | |
} | |
.main-content { | |
background: rgba(255, 255, 255, 0.95); | |
border-radius: 20px; | |
padding: 30px; | |
box-shadow: 0 5px 20px rgba(0,0,0,0.1); | |
backdrop-filter: blur(10px); | |
} | |
.input-section { | |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); | |
padding: 25px; | |
border-radius: 15px; | |
margin-bottom: 20px; | |
} | |
.generate-btn { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
color: white; | |
font-size: 1.3em; | |
padding: 15px 40px; | |
border-radius: 30px; | |
border: none; | |
cursor: pointer; | |
transition: all 0.3s ease; | |
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4); | |
width: 100%; | |
margin-top: 20px; | |
} | |
.generate-btn:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 7px 20px rgba(102, 126, 234, 0.6); | |
} | |
.generate-btn:active { | |
transform: translateY(0); | |
} | |
.video-output { | |
background: #f8f9fa; | |
padding: 20px; | |
border-radius: 15px; | |
text-align: center; | |
min-height: 400px; | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
} | |
.accordion { | |
background: rgba(255, 255, 255, 0.7); | |
border-radius: 10px; | |
margin-top: 15px; | |
padding: 15px; | |
} | |
.slider-container { | |
background: rgba(255, 255, 255, 0.5); | |
padding: 15px; | |
border-radius: 10px; | |
margin: 10px 0; | |
} | |
body { | |
background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab); | |
background-size: 400% 400%; | |
animation: gradient 15s ease infinite; | |
} | |
@keyframes gradient { | |
0% { background-position: 0% 50%; } | |
50% { background-position: 100% 50%; } | |
100% { background-position: 0% 50%; } | |
} | |
.warning-box { | |
background: rgba(255, 193, 7, 0.1); | |
border: 1px solid rgba(255, 193, 7, 0.3); | |
border-radius: 10px; | |
padding: 15px; | |
margin: 10px 0; | |
color: #856404; | |
font-size: 0.9em; | |
} | |
.footer { | |
text-align: center; | |
margin-top: 30px; | |
color: #666; | |
font-size: 0.9em; | |
} | |
""" | |
# Gradio UI | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
with gr.Column(elem_classes="container"): | |
# Header with GPU status | |
gr.HTML(""" | |
<div class="header"> | |
<h1>๐ฌ AI Video Magic Studio</h1> | |
<p>Transform your images into captivating videos with Wan 2.1 + CausVid LoRA</p> | |
<div class="gpu-status">๐ฅ๏ธ Zero GPU Optimized</div> | |
</div> | |
""") | |
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ฒฝ๊ณ | |
gr.HTML(""" | |
<div class="warning-box"> | |
<strong>๐ก Zero GPU Performance Tips:</strong> | |
<ul style="margin: 5px 0; padding-left: 20px;"> | |
<li>Maximum duration: 2.5 seconds (limited by Zero GPU)</li> | |
<li>Maximum total pixels: 409,600 (e.g., 640ร640, 512ร832, 448ร896)</li> | |
<li>Maximum single dimension: 832 pixels</li> | |
<li>Use 4-6 steps for optimal speed/quality balance</li> | |
<li>Wait between generations to avoid queue errors</li> | |
</ul> | |
</div> | |
""") | |
with gr.Row(elem_classes="main-content"): | |
with gr.Column(scale=1): | |
gr.Markdown("### ๐ธ Input Settings") | |
with gr.Column(elem_classes="input-section"): | |
input_image = gr.Image( | |
type="pil", | |
label="๐ผ๏ธ Upload Your Image", | |
elem_classes="image-upload" | |
) | |
prompt_input = gr.Textbox( | |
label="โจ Animation Prompt", | |
value=config.default_prompt, | |
placeholder="Describe how you want your image to move...", | |
lines=2 | |
) | |
duration_input = gr.Slider( | |
minimum=round(config.min_duration, 1), | |
maximum=2.5 if hasattr(spaces, 'GPU') else round(config.max_duration, 1), # Zero GPU ํ๊ฒฝ ์ ํ | |
step=0.1, | |
value=1.5, # ์์ ํ ๊ธฐ๋ณธ๊ฐ | |
label="โฑ๏ธ Video Duration (seconds) - Limited to 2.5s in Zero GPU", | |
elem_classes="slider-container" | |
) | |
with gr.Accordion("๐๏ธ Advanced Settings", open=False, elem_classes="accordion"): | |
negative_prompt = gr.Textbox( | |
label="๐ซ Negative Prompt", | |
value=config.default_negative_prompt, | |
lines=2 | |
) | |
with gr.Row(): | |
seed = gr.Slider( | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
label="๐ฒ Seed" | |
) | |
randomize_seed = gr.Checkbox( | |
label="๐ Randomize", | |
value=True | |
) | |
with gr.Row(): | |
height_slider = gr.Slider( | |
minimum=config.slider_min_h, | |
maximum=config.slider_max_h, | |
step=config.mod_value, | |
value=config.default_height, | |
label="๐ Height (max 832px in Zero GPU)" | |
) | |
width_slider = gr.Slider( | |
minimum=config.slider_min_w, | |
maximum=config.slider_max_w, | |
step=config.mod_value, | |
value=config.default_width, | |
label="๐ Width (max 832px in Zero GPU)" | |
) | |
steps_slider = gr.Slider( | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=4, | |
label="๐ง Quality Steps (4-8 recommended)" | |
) | |
guidance_scale = gr.Slider( | |
minimum=0.0, | |
maximum=20.0, | |
step=0.5, | |
value=1.0, | |
label="๐ฏ Guidance Scale", | |
visible=False | |
) | |
generate_btn = gr.Button( | |
"๐ฌ Generate Video", | |
variant="primary", | |
elem_classes="generate-btn" | |
) | |
with gr.Column(scale=1): | |
gr.Markdown("### ๐ฅ Generated Video") | |
video_output = gr.Video( | |
label="", | |
autoplay=True, | |
elem_classes="video-output" | |
) | |
gr.HTML(""" | |
<div class="footer"> | |
<p>๐ก Tip: For best results, use clear images with good lighting</p> | |
</div> | |
""") | |
# Examples | |
gr.Examples( | |
examples=[ | |
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 512, 512], | |
["forg.jpg", "the frog jumps around", 576, 320], # 16:9 aspect ratio within limits | |
], | |
inputs=[input_image, prompt_input, height_slider, width_slider], | |
outputs=[video_output, seed], | |
fn=generate_video, | |
cache_examples=False # ์บ์ ๋นํ์ฑํ๋ก ๋ฉ๋ชจ๋ฆฌ ์ ์ฝ | |
) | |
# ๊ฐ์ ์ฌํญ ์์ฝ (์๊ฒ) | |
gr.HTML(""" | |
<div style="background: rgba(255,255,255,0.9); border-radius: 10px; padding: 15px; margin-top: 20px; font-size: 0.8em; text-align: center;"> | |
<p style="margin: 0; color: #666;"> | |
<strong style="color: #667eea;">Enhanced with:</strong> | |
๐ก๏ธ GPU Crash Protection โข โก Memory Optimization โข ๐จ Modern UI โข ๐ง Clean Architecture | |
</p> | |
</div> | |
""") | |
# Event handlers | |
input_image.upload( | |
fn=handle_image_upload, | |
inputs=[input_image], | |
outputs=[height_slider, width_slider] | |
) | |
input_image.clear( | |
fn=handle_image_upload, | |
inputs=[input_image], | |
outputs=[height_slider, width_slider] | |
) | |
generate_btn.click( | |
fn=generate_video, | |
inputs=[ | |
input_image, prompt_input, height_slider, width_slider, | |
negative_prompt, duration_input, guidance_scale, | |
steps_slider, seed, randomize_seed | |
], | |
outputs=[video_output, seed] | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=1, concurrency_count=1).launch() # ๋ ์๊ฒฉํ ๋์์ฑ ์ ์ด |