File size: 2,098 Bytes
519a20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import fetch from 'node-fetch';
import { setAdditionalHeadersByType } from '../additional-headers.js';
import { TEXTGEN_TYPES } from '../constants.js';

/**
 * Gets the vector for the given text from VLLM
 * @param {string[]} texts - The array of texts to get the vectors for
 * @param {string} apiUrl - The API URL
 * @param {string} model - The model to use
 * @param {import('../users.js').UserDirectoryList} directories - The directories object for the user
 * @returns {Promise<number[][]>} - The array of vectors for the texts
 */
export async function getVllmBatchVector(texts, apiUrl, model, directories) {
    const url = new URL(apiUrl);
    url.pathname = '/v1/embeddings';

    const headers = {};
    setAdditionalHeadersByType(headers, TEXTGEN_TYPES.VLLM, apiUrl, directories);

    const response = await fetch(url, {
        method: 'POST',
        headers: {
            'Content-Type': 'application/json',
            ...headers,
        },
        body: JSON.stringify({ input: texts, model }),
    });

    if (!response.ok) {
        const responseText = await response.text();
        throw new Error(`VLLM: Failed to get vector for text: ${response.statusText} ${responseText}`);
    }

    /** @type {any} */
    const data = await response.json();

    if (!Array.isArray(data?.data)) {
        throw new Error('API response was not an array');
    }

    // Sort data by x.index to ensure the order is correct
    data.data.sort((a, b) => a.index - b.index);

    const vectors = data.data.map(x => x.embedding);
    return vectors;
}

/**
 * Gets the vector for the given text from VLLM
 * @param {string} text - The text to get the vector for
 * @param {string} apiUrl - The API URL
 * @param {string} model - The model to use
 * @param {import('../users.js').UserDirectoryList} directories - The directories object for the user
 * @returns {Promise<number[]>} - The vector for the text
 */
export async function getVllmVector(text, apiUrl, model, directories) {
    const vectors = await getVllmBatchVector([text], apiUrl, model, directories);
    return vectors[0];
}