Spaces:
Running
Running
| import os | |
| import os.path as osp | |
| import re | |
| import pickle | |
| import numpy as np | |
| import pandas as pd | |
| from tqdm import tqdm | |
| import torch | |
| from torch_geometric.data import Data, InMemoryDataset | |
| from rdkit import Chem, RDLogger | |
| from src.data.utils import label2onehot | |
| RDLogger.DisableLog('rdApp.*') | |
| class DruggenDataset(InMemoryDataset): | |
| def __init__(self, root, dataset_file, raw_files, max_atom, features, | |
| atom_encoder, atom_decoder, bond_encoder, bond_decoder, | |
| transform=None, pre_transform=None, pre_filter=None): | |
| """ | |
| Initialize the DruggenDataset with pre-loaded encoder/decoder dictionaries. | |
| Parameters: | |
| root (str): Root directory. | |
| dataset_file (str): Name of the processed dataset file. | |
| raw_files (str): Path to the raw SMILES file. | |
| max_atom (int): Maximum number of atoms allowed in a molecule. | |
| features (bool): Whether to include additional node features. | |
| atom_encoder (dict): Pre-loaded atom encoder dictionary. | |
| atom_decoder (dict): Pre-loaded atom decoder dictionary. | |
| bond_encoder (dict): Pre-loaded bond encoder dictionary. | |
| bond_decoder (dict): Pre-loaded bond decoder dictionary. | |
| transform, pre_transform, pre_filter: See PyG InMemoryDataset. | |
| """ | |
| self.dataset_name = dataset_file.split(".")[0] | |
| self.dataset_file = dataset_file | |
| self.raw_files = raw_files | |
| self.max_atom = max_atom | |
| self.features = features | |
| # Use the provided encoder/decoder mappings. | |
| self.atom_encoder_m = atom_encoder | |
| self.atom_decoder_m = atom_decoder | |
| self.bond_encoder_m = bond_encoder | |
| self.bond_decoder_m = bond_decoder | |
| self.atom_num_types = len(atom_encoder) | |
| self.bond_num_types = len(bond_encoder) | |
| super().__init__(root, transform, pre_transform, pre_filter) | |
| path = osp.join(self.processed_dir, dataset_file) | |
| self.data, self.slices = torch.load(path) | |
| self.root = root | |
| def processed_dir(self): | |
| """ | |
| Returns the directory where processed dataset files are stored. | |
| """ | |
| return self.root | |
| def raw_file_names(self): | |
| """ | |
| Returns the raw SMILES file name. | |
| """ | |
| return self.raw_files | |
| def processed_file_names(self): | |
| """ | |
| Returns the name of the processed dataset file. | |
| """ | |
| return self.dataset_file | |
| def _filter_smiles(self, smiles_list): | |
| """ | |
| Filters the input list of SMILES strings to keep only valid molecules that: | |
| - Can be successfully parsed, | |
| - Have a number of atoms less than or equal to the maximum allowed (max_atom), | |
| - Contain only atoms present in the atom_encoder, | |
| - Contain only bonds present in the bond_encoder. | |
| Parameters: | |
| smiles_list (list): List of SMILES strings. | |
| Returns: | |
| max_length (int): Maximum number of atoms found in the filtered molecules. | |
| filtered_smiles (list): List of valid SMILES strings. | |
| """ | |
| max_length = 0 | |
| filtered_smiles = [] | |
| for smiles in tqdm(smiles_list, desc="Filtering SMILES"): | |
| mol = Chem.MolFromSmiles(smiles) | |
| if mol is None: | |
| continue | |
| # Check molecule size | |
| molecule_size = mol.GetNumAtoms() | |
| if molecule_size > self.max_atom: | |
| continue | |
| # Filter out molecules with atoms not in the atom_encoder | |
| if not all(atom.GetAtomicNum() in self.atom_encoder_m for atom in mol.GetAtoms()): | |
| continue | |
| # Filter out molecules with bonds not in the bond_encoder | |
| if not all(bond.GetBondType() in self.bond_encoder_m for bond in mol.GetBonds()): | |
| continue | |
| filtered_smiles.append(smiles) | |
| max_length = max(max_length, molecule_size) | |
| return max_length, filtered_smiles | |
| def _genA(self, mol, connected=True, max_length=None): | |
| """ | |
| Generates the adjacency matrix for a molecule based on its bond structure. | |
| Parameters: | |
| mol (rdkit.Chem.Mol): The molecule. | |
| connected (bool): If True, ensures all atoms are connected. | |
| max_length (int, optional): The size of the matrix; if None, uses number of atoms in mol. | |
| Returns: | |
| np.array: Adjacency matrix with bond types as entries, or None if disconnected. | |
| """ | |
| max_length = max_length if max_length is not None else mol.GetNumAtoms() | |
| A = np.zeros((max_length, max_length)) | |
| begin = [b.GetBeginAtomIdx() for b in mol.GetBonds()] | |
| end = [b.GetEndAtomIdx() for b in mol.GetBonds()] | |
| bond_type = [self.bond_encoder_m[b.GetBondType()] for b in mol.GetBonds()] | |
| A[begin, end] = bond_type | |
| A[end, begin] = bond_type | |
| degree = np.sum(A[:mol.GetNumAtoms(), :mol.GetNumAtoms()], axis=-1) | |
| return A if connected and (degree > 0).all() else None | |
| def _genX(self, mol, max_length=None): | |
| """ | |
| Generates the feature vector for each atom in a molecule by encoding their atomic numbers. | |
| Parameters: | |
| mol (rdkit.Chem.Mol): The molecule. | |
| max_length (int, optional): Length of the feature vector; if None, uses number of atoms in mol. | |
| Returns: | |
| np.array: Array of atom feature indices, padded with zeros if necessary, or None on error. | |
| """ | |
| max_length = max_length if max_length is not None else mol.GetNumAtoms() | |
| try: | |
| return np.array([self.atom_encoder_m[atom.GetAtomicNum()] for atom in mol.GetAtoms()] + | |
| [0] * (max_length - mol.GetNumAtoms())) | |
| except KeyError as e: | |
| print(f"Skipping molecule with unsupported atom: {e}") | |
| print(f"Skipped SMILES: {Chem.MolToSmiles(mol)}") | |
| return None | |
| def _genF(self, mol, max_length=None): | |
| """ | |
| Generates additional node features for a molecule using various atomic properties. | |
| Parameters: | |
| mol (rdkit.Chem.Mol): The molecule. | |
| max_length (int, optional): Number of rows in the features matrix; if None, uses number of atoms. | |
| Returns: | |
| np.array: Array of additional features for each atom, padded with zeros if necessary. | |
| """ | |
| max_length = max_length if max_length is not None else mol.GetNumAtoms() | |
| features = np.array([[*[a.GetDegree() == i for i in range(5)], | |
| *[a.GetExplicitValence() == i for i in range(9)], | |
| *[int(a.GetHybridization()) == i for i in range(1, 7)], | |
| *[a.GetImplicitValence() == i for i in range(9)], | |
| a.GetIsAromatic(), | |
| a.GetNoImplicit(), | |
| *[a.GetNumExplicitHs() == i for i in range(5)], | |
| *[a.GetNumImplicitHs() == i for i in range(5)], | |
| *[a.GetNumRadicalElectrons() == i for i in range(5)], | |
| a.IsInRing(), | |
| *[a.IsInRingSize(i) for i in range(2, 9)]] | |
| for a in mol.GetAtoms()], dtype=np.int32) | |
| return np.vstack((features, np.zeros((max_length - features.shape[0], features.shape[1])))) | |
| def decoder_load(self, dictionary_name, file): | |
| """ | |
| Returns the pre-loaded decoder dictionary based on the dictionary name. | |
| Parameters: | |
| dictionary_name (str): Name of the dictionary ("atom" or "bond"). | |
| file: Placeholder parameter for compatibility. | |
| Returns: | |
| dict: The corresponding decoder dictionary. | |
| """ | |
| if dictionary_name == "atom": | |
| return self.atom_decoder_m | |
| elif dictionary_name == "bond": | |
| return self.bond_decoder_m | |
| else: | |
| raise ValueError("Unknown dictionary name.") | |
| def matrices2mol(self, node_labels, edge_labels, strict=True, file_name=None): | |
| """ | |
| Converts graph representations (node labels and edge labels) back to an RDKit molecule. | |
| Parameters: | |
| node_labels (iterable): Encoded atom labels. | |
| edge_labels (np.array): Adjacency matrix with encoded bond types. | |
| strict (bool): If True, sanitizes the molecule and returns None on failure. | |
| file_name: Placeholder parameter for compatibility. | |
| Returns: | |
| rdkit.Chem.Mol: The resulting molecule, or None if sanitization fails. | |
| """ | |
| mol = Chem.RWMol() | |
| for node_label in node_labels: | |
| mol.AddAtom(Chem.Atom(self.atom_decoder_m[node_label])) | |
| for start, end in zip(*np.nonzero(edge_labels)): | |
| if start > end: | |
| mol.AddBond(int(start), int(end), self.bond_decoder_m[edge_labels[start, end]]) | |
| if strict: | |
| try: | |
| Chem.SanitizeMol(mol) | |
| except Exception: | |
| mol = None | |
| return mol | |
| def check_valency(self, mol): | |
| """ | |
| Checks that no atom in the molecule has exceeded its allowed valency. | |
| Parameters: | |
| mol (rdkit.Chem.Mol): The molecule. | |
| Returns: | |
| tuple: (True, None) if valid; (False, atomid_valence) if there is a valency issue. | |
| """ | |
| try: | |
| Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES) | |
| return True, None | |
| except ValueError as e: | |
| e = str(e) | |
| p = e.find('#') | |
| e_sub = e[p:] | |
| atomid_valence = list(map(int, re.findall(r'\d+', e_sub))) | |
| return False, atomid_valence | |
| def correct_mol(self, mol): | |
| """ | |
| Corrects a molecule by removing bonds until all atoms satisfy their valency limits. | |
| Parameters: | |
| mol (rdkit.Chem.Mol): The molecule. | |
| Returns: | |
| rdkit.Chem.Mol: The corrected molecule. | |
| """ | |
| while True: | |
| flag, atomid_valence = self.check_valency(mol) | |
| if flag: | |
| break | |
| else: | |
| # Expecting two numbers: atom index and its valence. | |
| assert len(atomid_valence) == 2 | |
| idx = atomid_valence[0] | |
| queue = [] | |
| for b in mol.GetAtomWithIdx(idx).GetBonds(): | |
| queue.append((b.GetIdx(), int(b.GetBondType()), b.GetBeginAtomIdx(), b.GetEndAtomIdx())) | |
| queue.sort(key=lambda tup: tup[1], reverse=True) | |
| if queue: | |
| start = queue[0][2] | |
| end = queue[0][3] | |
| mol.RemoveBond(start, end) | |
| return mol | |
| def process(self, size=None): | |
| """ | |
| Processes the raw SMILES file by filtering and converting each valid SMILES into a PyTorch Geometric Data object. | |
| The resulting dataset is saved to disk. | |
| Parameters: | |
| size (optional): Placeholder parameter for compatibility. | |
| Side Effects: | |
| Saves the processed dataset as a file in the processed directory. | |
| """ | |
| # Read raw SMILES from file (assuming CSV with no header) | |
| smiles_list = pd.read_csv(self.raw_files, header=None)[0].tolist() | |
| max_length, filtered_smiles = self._filter_smiles(smiles_list) | |
| data_list = [] | |
| self.m_dim = len(self.atom_decoder_m) | |
| for smiles in tqdm(filtered_smiles, desc='Processing dataset', total=len(filtered_smiles)): | |
| mol = Chem.MolFromSmiles(smiles) | |
| A = self._genA(mol, connected=True, max_length=max_length) | |
| if A is not None: | |
| x_array = self._genX(mol, max_length=max_length) | |
| if x_array is None: | |
| continue | |
| x = torch.from_numpy(x_array).to(torch.long).view(1, -1) | |
| x = label2onehot(x, self.m_dim).squeeze() | |
| if self.features: | |
| f = torch.from_numpy(self._genF(mol, max_length=max_length)).to(torch.long).view(x.shape[0], -1) | |
| x = torch.concat((x, f), dim=-1) | |
| adjacency = torch.from_numpy(A) | |
| edge_index = adjacency.nonzero(as_tuple=False).t().contiguous() | |
| edge_attr = adjacency[edge_index[0], edge_index[1]].to(torch.long) | |
| data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, smiles=smiles) | |
| if self.pre_filter is not None and not self.pre_filter(data): | |
| continue | |
| if self.pre_transform is not None: | |
| data = self.pre_transform(data) | |
| data_list.append(data) | |
| torch.save(self.collate(data_list), osp.join(self.processed_dir, self.dataset_file)) |