Spaces:
Running
Running
File size: 8,050 Bytes
711a69b 1df4c13 8055678 711a69b 7741a44 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b e0290d0 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b 1df4c13 711a69b eddb8ec 8055678 acd6553 8055678 acd6553 8055678 711a69b 1df4c13 711a69b 8055678 711a69b 1df4c13 711a69b 8055678 711a69b 8055678 711a69b 8055678 1df4c13 711a69b 1df4c13 711a69b e0290d0 711a69b e0290d0 711a69b 8055678 711a69b e0290d0 711a69b e0290d0 711a69b 8055678 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import csv
import json
import locale
import os
import sys
from typing import Dict, Union
import pandas as pd
model_details = {
"DeepSeek R1-0528": (
"https://huggingface.co/deepseek-ai/DeepSeek-R1-0528",
685,
"General",
"V2",
),
"DeepSeek R1": (
"https://huggingface.co/deepseek-ai/DeepSeek-R1",
685,
"General",
"V1",
),
"Llama 3.1 405B": (
"https://huggingface.co/RedHatAI/Meta-Llama-3.1-405B-FP8",
406,
"General",
"V1",
),
"Qwen3 236B A22B": (
"https://huggingface.co/Qwen/Qwen3-235B-A22B",
235,
"General",
"V2",
),
"Llama 3.(1-3) 70B": (
"https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct",
70.6,
"General",
"V1",
),
"Qwen2.5 72B": (
"https://huggingface.co/Qwen/Qwen2.5-72B-Instruct",
72.7,
"General",
"V1",
),
"QwQ 32B": ("https://huggingface.co/Qwen/QwQ-32B", 32.8, "General", "V2"),
"Qwen2.5 32B": ("https://huggingface.co/Qwen/Qwen2.5-32B", 32.5, "General", "V1"),
"StarChat2 15B v0.1": (
"https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1",
16,
"General",
"V1",
),
"DeepSeek R1 Distill Qwen 14B": (
"https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B",
14.8,
"General",
"V1",
),
"CodeLlama 70B": (
"https://huggingface.co/codellama/CodeLlama-70b-hf",
69,
"Coding",
"V1",
),
"QwenCoder 2.5 32B": (
"https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct",
32.5,
"Coding",
"V1",
),
"DeepSeek Coder 33B": (
"https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct",
33.3,
"Coding",
"V1",
),
"QwenCoder 2.5 14B": (
"https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct",
14.7,
"Coding",
"V1",
),
"DeepCoder 14B": (
"https://huggingface.co/agentica-org/DeepCoder-14B-Preview",
14.8,
"Coding",
"V2",
),
"OpenCoder 8B": (
"https://huggingface.co/infly/OpenCoder-8B-Instruct",
7.77,
"Coding",
"V1",
),
"SeedCoder 8B": (
"https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Instruct",
8.25,
"Coding",
"V2",
),
"SeedCoder 8B Reasoning": (
"https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Reasoning-bf16",
8.25,
"Coding",
"V2",
),
"QwenCoder 2.5 7B": (
"https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct",
7.61,
"Coding",
"V1",
),
"DeepSeek Coder 6.7B": (
"https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct",
6.74,
"Coding",
"V1",
),
"HaVen-CodeQwen": (
"https://huggingface.co/yangyiyao/HaVen-CodeQwen",
7.25,
"RTL-Specific",
"V1",
),
"CodeV R1 Distill Qwen 7B": (
"https://huggingface.co/zhuyaoyu/CodeV-R1-Distill-Qwen-7B",
7.62,
"RTL-Specific",
"V2",
),
"CodeV-CL-7B": (
"https://huggingface.co/yang-z/CodeV-CL-7B",
6.74,
"RTL-Specific",
"V1",
),
"CodeV-QW-7B": (
"https://huggingface.co/yang-z/CodeV-QW-7B",
7.25,
"RTL-Specific",
"V1",
),
"CodeV-DS-6.7B": (
"https://huggingface.co/yang-z/CodeV-DS-6.7B",
6.74,
"RTL-Specific",
"V1",
),
"RTLCoder Mistral": (
"https://huggingface.co/ishorn5/RTLCoder-v1.1",
7.24,
"RTL-Specific",
"V1",
),
"RTLCoder DeepSeek": (
"https://huggingface.co/ishorn5/RTLCoder-Deepseek-v1.1",
6.74,
"RTL-Specific",
"V1",
),
"OriGen": ("https://huggingface.co/henryen/OriGen", 6.74, "RTL-Specific", "V1"),
"Qwen3 Coder 480B A35B": (
"https://huggingface.co/Qwen/Qwen3-Coder-480B-A35B-Instruct",
480,
"Coding",
"V2",
),
"Magistral Small 2506": (
"https://huggingface.co/mistralai/Magistral-Small-2506",
23.6,
"General",
"V2",
),
}
def get_headers(reader, agg=False) -> Union[list, list]:
metrics, benchs = [], []
for i, row in enumerate(reader):
if i == 0:
metrics = row[1:]
elif i == 1 and not agg:
benchs = row[1:]
break
else:
return metrics
return metrics, benchs
def get_model_params_and_url(model) -> Union[str, str, float, str]:
if model not in model_details:
return "-", 0.0, "Unknown", "Unknown"
url = model_details[model][0]
params = model_details[model][1]
type = model_details[model][2]
release = model_details[model][3]
return url, params, type, release
def parse_results(csv_path: str) -> list[dict]:
"""
Each row has the following format:
MODEL | BENCHMARK | TASK | METRIC | RESULT
"""
dataset = []
models = []
with open(csv_path, newline="") as csvfile:
reader = csv.reader(csvfile, delimiter=",")
metrics, benchs = get_headers(reader)
for i, row in enumerate(reader):
if not row or all(not cell.strip() for cell in row):
continue
model = row[0]
if not model:
continue
url, params, type, release = get_model_params_and_url(model)
models.append(model)
row = row[1:]
ctr = 0
for metric, bench in zip(metrics, benchs):
if metric == "EM":
metric = "Exact Matching (EM)"
record = {}
record["Model"] = model
record["Model Type"] = type
record["Benchmark"] = bench
record["Task"] = metric
record["Result"] = float(row[ctr].replace(",", "."))
record["Model URL"] = url
record["Params"] = params
record["Release"] = release
dataset.append(record)
ctr += 1
print(models)
return dataset
def parse_agg(csv_path: str = "results/aggregated_scores_icarus.csv") -> pd.DataFrame:
"""
Each row has the following format:
MODEL | BENCHMARK | TASK | METRIC | RESULT
"""
return pd.read_csv(csv_path)
def writeJson(data: list, path: str):
with open(path, "w") as f:
json.dump(data, f, indent=4, ensure_ascii=False)
print("Done")
def read_json(json_path: str = "results/results_icarus.json"):
with open(json_path, "r", encoding="utf-8") as file:
data = json.load(file)
return data
def read_data(
json_path: str = "results/results_icarus.json",
) -> tuple[pd.DataFrame, list, list, str]:
data = read_json(json_path)
df = pd.DataFrame(data)
df.rename(
columns={
"Model": "Model",
"Benchmark": "Benchmark",
"Task": "Metric",
"Result": "Score",
"EM": "Exact Matching (EM)",
},
inplace=True,
)
df["Params"] = pd.to_numeric(df["Params"], errors="coerce")
benchmarks = sorted(df["Benchmark"].unique().tolist(), reverse=True)
metrics = df["Metric"].unique().tolist()
default_metric = (
"Functionality (FNC)" if "Functionality (FNC)" in metrics else metrics[0]
)
return df, benchmarks, metrics, default_metric
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Usage: python results/parse.py <path_to_input_csv>")
sys.exit(1)
csv_path = sys.argv[1]
if not os.path.exists(csv_path):
print(f"Error: File not found at {csv_path}")
sys.exit(1)
json_path = os.path.splitext(csv_path)[0] + ".json"
print(f"Parsing {csv_path}...")
parsed_data = parse_results(csv_path)
writeJson(parsed_data, json_path)
|