File size: 43,703 Bytes
1e74724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
import os
import shutil
import argparse
import emage.mertic
from moviepy.tools import verbose_print
from omegaconf import OmegaConf
import random
import numpy as np
import json 
import librosa
from datetime import datetime

import importlib
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import AdamW
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
# from torch.utils.tensorboard import SummaryWriter
import wandb
from diffusers.optimization import get_scheduler
from tqdm import tqdm
import smplx
from moviepy.editor import VideoFileClip, AudioFileClip, ImageSequenceClip
import igraph

import emage
import utils.rotation_conversions as rc
from create_graph import path_visualization, graph_pruning, get_motion_reps_tensor

def search_path(graph, audio_low_np, audio_high_np, top_k=1, loop_penalty=0.1, search_mode="both"):
    T = audio_low_np.shape[0]  # Total time steps
    # Initialize the beam with start nodes (nodes with no previous node)
    start_nodes = [v for v in graph.vs if v['previous'] is None or v['previous'] == -1]
    beam = []
    for node in start_nodes:
        motion_low = node['motion_low']  # Shape: [C]
        motion_high = node['motion_high']  # Shape: [C]
        # cost = np.linalg.norm(audio_low_np[0] - motion_low) + np.linalg.norm(audio_high_np - motion_high)
        if search_mode == "both":
            cost = 2 - (np.dot(audio_low_np[0], motion_low.T) + np.dot(audio_high_np[0], motion_high.T))
        elif search_mode == "high_level":
            cost = 1 - np.dot(audio_high_np[0], motion_high.T)
        elif search_mode == "low_level":
            cost = 1 - np.dot(audio_low_np[0], motion_low.T)
        sequence = [node]
        beam.append((cost, sequence))

    # Keep only the top_k initial nodes
    beam.sort(key=lambda x: x[0])
    beam = beam[:top_k]

    # Beam search over time steps
    for t in range(1, T):
        new_beam = []
        for cost, seq in beam:
            last_node = seq[-1]
            neighbor_indices = graph.neighbors(last_node.index, mode='OUT')
            if not neighbor_indices:
                continue  # No outgoing edges from the last node
            for idx in neighbor_indices:
                neighbor = graph.vs[idx]
                # Check for loops
                if neighbor in seq:
                    # Apply loop penalty
                    loop_cost = cost + loop_penalty
                else:
                    loop_cost = cost

                motion_low = neighbor['motion_low']  # Shape: [C]
                motion_high = neighbor['motion_high']  # Shape: [C]
                # cost_increment = np.linalg.norm(audio_low_np[t] - motion_low) + np.linalg.norm(audio_high_np[t] - motion_high)
                if search_mode == "both":
                    cost_increment = 2 - (np.dot(audio_low_np[t], motion_low.T) + np.dot(audio_high_np[t], motion_high.T))
                elif search_mode == "high_level":
                    cost_increment = 1 - np.dot(audio_high_np[t], motion_high.T)
                elif search_mode == "low_level":
                    cost_increment = 1 - np.dot(audio_low_np[t], motion_low.T)
                new_cost = loop_cost + cost_increment
                new_seq = seq + [neighbor]
                new_beam.append((new_cost, new_seq))
        if not new_beam:
            break  # Cannot extend any further
        # Keep only the top_k sequences
        new_beam.sort(key=lambda x: x[0])
        beam = new_beam[:top_k]

    # Extract paths and continuity information
    path_list = []
    is_continue_list = []
    for cost, seq in beam:
        path_list.append(seq)
        print("Cost: ", cost, "path", [node.index for node in seq])
        is_continue = []
        for i in range(len(seq) - 1):
            edge_id = graph.get_eid(seq[i].index, seq[i + 1].index)
            is_cont = graph.es[edge_id]['is_continue']
            is_continue.append(is_cont)
        is_continue_list.append(is_continue)
    return path_list, is_continue_list

def search_path_dp(graph, audio_low_np, audio_high_np, loop_penalty=0.01, top_k=1, search_mode="both", continue_penalty=0.01):
    T = audio_low_np.shape[0]  # Total time steps
    N = len(graph.vs)          # Total number of nodes in the graph

    # Initialize DP tables
    min_cost = [{} for _ in range(T)]         # min_cost[t][node.index] = (cost, predecessor_index, non_continue_count)
    visited_nodes = [{} for _ in range(T)]    # visited_nodes[t][node.index] = dict of node visit counts

    # Initialize the first time step
    start_nodes = [v for v in graph.vs if v['previous'] is None or v['previous'] == -1]
    for node in start_nodes:
        motion_low = node['motion_low']      # Shape: [C]
        motion_high = node['motion_high']    # Shape: [C]

        # Cost using cosine similarity
        if search_mode == "both":
            cost = 2 - (np.dot(audio_low_np[0], motion_low.T) + np.dot(audio_high_np[0], motion_high.T))
        elif search_mode == "high_level":
            cost = 1 - np.dot(audio_high_np[0], motion_high.T)
        elif search_mode == "low_level":
            cost = 1 - np.dot(audio_low_np[0], motion_low.T)
        
        min_cost[0][node.index] = (cost, None, 0)  # Initialize with no predecessor and 0 non-continue count
        visited_nodes[0][node.index] = {node.index: 1}  # Initialize visit count as a dictionary

    # DP over time steps
    for t in range(1, T):
        for node in graph.vs:
            node_index = node.index
            min_cost_t = float('inf')
            best_predecessor = None
            best_visited = None
            best_non_continue_count = 0

            # Incoming edges to the current node
            incoming_edges = graph.es.select(_to=node_index)
            for edge in incoming_edges:
                prev_node_index = edge.source
                prev_node = graph.vs[prev_node_index]
                if prev_node_index in min_cost[t-1]:
                    prev_cost, _, prev_non_continue_count = min_cost[t-1][prev_node_index]
                    prev_visited = visited_nodes[t-1][prev_node_index]

                    # Loop punishment
                    if node_index in prev_visited:
                        loop_time = prev_visited[node_index]  # Get the count of previous visits
                        loop_cost = prev_cost + loop_penalty * np.exp(loop_time)  # Apply exponential penalty
                        new_visited = prev_visited.copy()
                        new_visited[node_index] = loop_time + 1  # Increment visit count
                    else:
                        loop_cost = prev_cost
                        new_visited = prev_visited.copy()
                        new_visited[node_index] = 1  # Initialize visit count for the new node

                    motion_low = node['motion_low']      # Shape: [C]
                    motion_high = node['motion_high']    # Shape: [C]
                    
                    if search_mode == "both":
                        cost_increment = 2 - (np.dot(audio_low_np[t], motion_low.T) + np.dot(audio_high_np[t], motion_high.T))
                    elif search_mode == "high_level":
                        cost_increment = 1 - np.dot(audio_high_np[t], motion_high.T)
                    elif search_mode == "low_level":
                        cost_increment = 1 - np.dot(audio_low_np[t], motion_low.T)
                    
                    # Check if the edge is "is_continue"
                    edge_id = edge.index
                    is_continue = graph.es[edge_id]['is_continue']
                    
                    if not is_continue:
                        non_continue_count = prev_non_continue_count + 1  # Increment the count of non-continue edges
                    else:
                        non_continue_count = prev_non_continue_count

                    # Apply the penalty based on the square of the number of non-continuous edges
                    continue_penalty_cost = continue_penalty * non_continue_count
                    
                    total_cost = loop_cost + cost_increment + continue_penalty_cost

                    if total_cost < min_cost_t:
                        min_cost_t = total_cost
                        best_predecessor = prev_node_index
                        best_visited = new_visited
                        best_non_continue_count = non_continue_count

            if best_predecessor is not None:
                min_cost[t][node_index] = (min_cost_t, best_predecessor, best_non_continue_count)
                visited_nodes[t][node_index] = best_visited  # Store the new visit count dictionary

    # Find the node with the minimal cost at the last time step
    final_min_cost = float('inf')
    final_node_index = None
    for node_index, (cost, _, _) in min_cost[T-1].items():
        if cost < final_min_cost:
            final_min_cost = cost
            final_node_index = node_index

    if final_node_index is None:
        print("No valid path found.")
        return [], []

    # Backtrack to reconstruct the optimal path
    optimal_path_indices = []
    current_node_index = final_node_index
    for t in range(T-1, -1, -1):
        optimal_path_indices.append(current_node_index)
        _, predecessor, _ = min_cost[t][current_node_index]
        current_node_index = predecessor if predecessor is not None else None

    optimal_path_indices = optimal_path_indices[::-1]  # Reverse to get correct order
    optimal_path = [graph.vs[idx] for idx in optimal_path_indices]

    # Extract continuity information
    is_continue = []
    for i in range(len(optimal_path) - 1):
        edge_id = graph.get_eid(optimal_path[i].index, optimal_path[i + 1].index)
        is_cont = graph.es[edge_id]['is_continue']
        is_continue.append(is_cont)

    print("Optimal Cost: ", final_min_cost, "Path: ", optimal_path_indices)
    return [optimal_path], [is_continue]


# from torch.cuda.amp import autocast, GradScaler
# from torch.nn.utils import clip_grad_norm_

# # Initialize GradScaler
# scaler = GradScaler()

def train_val_fn(batch, model, device, mode="train", optimizer=None, lr_scheduler=None, max_grad_norm=1.0, **kwargs):
    if mode == "train":
        model.train()
        torch.set_grad_enabled(True)
        optimizer.zero_grad()
    else:
        model.eval()
        torch.set_grad_enabled(False)

    cached_rep15d = batch["cached_rep15d"].to(device)
    cached_audio_low = batch["cached_audio_low"].to(device)
    cached_audio_high = batch["cached_audio_high"].to(device)
    bert_time_aligned = batch["bert_time_aligned"].to(device)
    cached_audio_high = torch.cat([cached_audio_high, bert_time_aligned], dim=-1)
    audio_tensor = batch["audio_tensor"].to(device)

    # with autocast():  # Mixed precision context
    model_out = model(cached_rep15d=cached_rep15d, cached_audio_low=cached_audio_low, cached_audio_high=cached_audio_high, in_audio=audio_tensor)
    audio_lower = model_out["audio_low"]
    motion_lower = model_out["motion_low"]
    audio_hihger_cls = model_out["audio_cls"]
    motion_higher_cls = model_out["motion_cls"]

    high_loss = model_out["high_level_loss"]
    low_infonce, low_acc = model_out["low_level_loss"]
    loss_dict = {
        "low_cosine": low_infonce,
        "high_infonce": high_loss
    }
    loss = sum(loss_dict.values())
    loss_dict["loss"] = loss
    loss_dict["low_acc"] = low_acc
    loss_dict["acc"] = compute_average_precision(audio_hihger_cls, motion_higher_cls)

    if mode == "train":
        # Use GradScaler for backward pass
        # scaler.scale(loss).backward()
        
        # Clip gradients to the maximum norm
        # scaler.unscale_(optimizer)  # Unscale gradients before clipping
        # clip_grad_norm_(model.parameters(), max_grad_norm)

        # Step the optimizer
        # scaler.step(optimizer)
        # scaler.update()
        loss.backward()
        optimizer.step()
        lr_scheduler.step()

    return loss_dict


def test_fn(model, device, smplx_model, iteration, fgd_fn, srgr_fn, bc_fn, l1div_fn, candidate_json_path, test_path, cfg, **kwargs):
    torch.set_grad_enabled(False)
    pool_path = "./datasets/oliver_test/show-oliver-test.pkl"
    graph = igraph.Graph.Read_Pickle(fname=pool_path)

    save_dir = os.path.join(test_path, f"retrieved_motions_{iteration}")
    os.makedirs(save_dir, exist_ok=True)

    actual_model = model.module if isinstance(model, torch.nn.parallel.DistributedDataParallel) else model
    actual_model.eval()

    with open(candidate_json_path, 'r') as f:
        candidate_data = json.load(f)
    all_motions = {}
    for i, node in enumerate(graph.vs):
        if all_motions.get(node["name"]) is None:
            all_motions[node["name"]] = [node["axis_angle"].reshape(-1)]
        else:
            all_motions[node["name"]].append(node["axis_angle"].reshape(-1))
    for k, v in all_motions.items():
        all_motions[k] = np.stack(v) # T, J*3
    
    window_size = cfg.data.pose_length
    motion_high_all = []
    motion_low_all = []
    for k, v in all_motions.items():
        motion_tensor = torch.from_numpy(v).float().to(device).unsqueeze(0)
        _, t, _ = motion_tensor.shape

        num_chunks = t // window_size
        motion_high_list = []
        motion_low_list = []

        for i in range(num_chunks):
            start_idx = i * window_size
            end_idx = start_idx + window_size
            motion_slice = motion_tensor[:, start_idx:end_idx, :]
            
            motion_features = actual_model.get_motion_features(motion_slice)
            motion_high = motion_features["motion_high_weight"].cpu().numpy()
            motion_low = motion_features["motion_low"].cpu().numpy()

            motion_high_list.append(motion_high[0])
            motion_low_list.append(motion_low[0])

        remain_length = t % window_size
        if remain_length > 0:
            start_idx = t - window_size
            motion_slice = motion_tensor[:, start_idx:, :]

            motion_features = actual_model.get_motion_features(motion_slice)
            motion_high = motion_features["motion_high_weight"].cpu().numpy()
            motion_low = motion_features["motion_low"].cpu().numpy()

            motion_high_list.append(motion_high[0][-remain_length:])
            motion_low_list.append(motion_low[0][-remain_length:])

        motion_high_all.append(np.concatenate(motion_high_list, axis=0))
        motion_low_all.append(np.concatenate(motion_low_list, axis=0))

    motion_high_all = np.concatenate(motion_high_all, axis=0)
    motion_low_all = np.concatenate(motion_low_all, axis=0)
    # print(motion_high_all.shape, motion_low_all.shape)
    motion_low_all = motion_low_all / np.linalg.norm(motion_low_all, axis=1, keepdims=True)
    motion_high_all = motion_high_all / np.linalg.norm(motion_high_all, axis=1, keepdims=True)
    assert motion_high_all.shape[0] == len(graph.vs)
    assert motion_low_all.shape[0] == len(graph.vs)
    
    for i, node in enumerate(graph.vs):
        node["motion_high"] = motion_high_all[i]
        node["motion_low"] = motion_low_all[i]
    graph = graph_pruning(graph)

    for idx, pair in enumerate(tqdm(candidate_data, desc="Testing")):
        gt_motion = np.load(pair["motion_path"] + ".npz", allow_pickle=True)["poses"]
        target_length = gt_motion.shape[0]
        audio_path = pair["audio_path"] + ".wav"
        audio_waveform, sr = librosa.load(audio_path)
        audio_waveform = librosa.resample(audio_waveform, orig_sr=sr, target_sr=cfg.data.audio_sr)
        audio_tensor = torch.from_numpy(audio_waveform).float().to(device).unsqueeze(0)

        window_size = int(cfg.data.audio_sr * (cfg.data.pose_length / 30))
        _, t = audio_tensor.shape

        num_chunks = t // window_size
        audio_low_list = []
        audio_high_list = []

        for i in range(num_chunks):
            start_idx = i * window_size
            end_idx = start_idx + window_size
            # print(start_idx, end_idx, window_size)
            audio_slice = audio_tensor[:, start_idx:end_idx]

            model_out_candidates = actual_model.get_audio_features(audio_slice)
            audio_low = model_out_candidates["audio_low"]
            audio_high = model_out_candidates["audio_high_weight"]

            audio_low = F.normalize(audio_low, dim=2)[0].cpu().numpy()
            audio_high = F.normalize(audio_high, dim=2)[0].cpu().numpy()

            audio_low_list.append(audio_low)
            audio_high_list.append(audio_high)
            # print(audio_low.shape, audio_high.shape)
        

        remain_length = t % window_size
        if remain_length > 0:
            start_idx = t - window_size
            audio_slice = audio_tensor[:, start_idx:]

            model_out_candidates = actual_model.get_audio_features(audio_slice)
            audio_low = model_out_candidates["audio_low"]
            audio_high = model_out_candidates["audio_high_weight"]
            
            gap = target_length - np.concatenate(audio_low_list, axis=0).shape[1]
            audio_low = F.normalize(audio_low, dim=2)[0][-gap:].cpu().numpy()
            audio_high = F.normalize(audio_high, dim=2)[0][-gap:].cpu().numpy()
            
            # print(audio_low.shape, audio_high.shape)
            audio_low_list.append(audio_low)
            audio_high_list.append(audio_high)

        audio_low_all = np.concatenate(audio_low_list, axis=0)
        audio_high_all = np.concatenate(audio_high_list, axis=0)
        # search the path with audio low features [T, c] and audio high features [T, c]
        path_list, is_continue_list = search_path(graph, audio_low_all, audio_high_all, top_k=1, search_mode="high_level")
        res_motion = []
        counter = 0
        for path, is_continue in zip(path_list, is_continue_list):
            res_motion_current = path_visualization(
              graph, path, is_continue, os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), audio_path=audio_path, return_motion=True, verbose_continue=True
            )
            res_motion.append(res_motion_current)
            np.savez(os.path.join(save_dir, f"audio_{idx}_retri_{counter}.npz"), motion=res_motion_current)
            counter += 1

    metrics = {}
    counts = {"top1": 0, "top3": 0, "top10": 0}
    
    fgd_fn.reset()
    l1div_fn.reset()
    bc_fn.reset()
    srgr_fn.reset()
    for idx, pair in enumerate(tqdm(candidate_data, desc="Evaluating")):
        gt_motion = np.load(pair["motion_path"] + ".npz", allow_pickle=True)["poses"]
        audio_path = pair["audio_path"] + ".wav"
        gt_motion_tensor = torch.from_numpy(gt_motion).float().to(device).unsqueeze(0)
        bs, n, _ = gt_motion_tensor.size()
        audio_waveform, sr = librosa.load(audio_path, sr=None)
        audio_waveform = librosa.resample(audio_waveform, orig_sr=sr, target_sr=cfg.data.audio_sr)
        audio_tensor = torch.from_numpy(audio_waveform).float().to(device).unsqueeze(0)

        top1_path = os.path.join(save_dir, f"audio_{idx}_retri_0.npz")
        top1_motion = np.load(top1_path, allow_pickle=True)["motion"] # T 165
        top1_motion_tensor = torch.from_numpy(top1_motion).float().to(device).unsqueeze(0) # Add bs, to 1 T 165
            
        gt_vertex = smplx_model(
            betas=torch.zeros(bs*n, 300).to(device),
            transl=torch.zeros(bs*n, 3).to(device),
            expression=torch.zeros(bs*n, 100).to(device),
            jaw_pose=torch.zeros(bs*n, 3).to(device),
            global_orient=torch.zeros(bs*n, 3).to(device),
            body_pose=gt_motion_tensor.reshape(bs*n, 55*3)[:, 3:21*3+3],
            left_hand_pose=gt_motion_tensor.reshape(bs*n, 55*3)[:, 25*3:40*3],
            right_hand_pose=gt_motion_tensor.reshape(bs*n, 55*3)[:, 40*3:55*3],
            return_joints=True,
            leye_pose=torch.zeros(bs*n, 3).to(device),
            reye_pose=torch.zeros(bs*n, 3).to(device),
        )["joints"].detach().cpu().numpy().reshape(bs, n, 127*3)[0, :, :55*3]
        top1_vertex = smplx_model(
            betas=torch.zeros(bs*n, 300).to(device),
            transl=torch.zeros(bs*n, 3).to(device),
            expression=torch.zeros(bs*n, 100).to(device),
            jaw_pose=torch.zeros(bs*n, 3).to(device),
            global_orient=torch.zeros(bs*n, 3).to(device),
            body_pose=top1_motion_tensor.reshape(bs*n, 55*3)[:, 3:21*3+3],
            left_hand_pose=top1_motion_tensor.reshape(bs*n, 55*3)[:, 25*3:40*3],
            right_hand_pose=top1_motion_tensor.reshape(bs*n, 55*3)[:, 40*3:55*3],
            return_joints=True,
            leye_pose=torch.zeros(bs*n, 3).to(device),
            reye_pose=torch.zeros(bs*n, 3).to(device),
        )["joints"].detach().cpu().numpy().reshape(bs, n, 127*3)[0, :, :55*3]
    
        l1div_fn.run(top1_vertex)
        # print(audio_waveform.shape, top1_vertex.shape)
        onset_bt = bc_fn.load_audio(audio_waveform, t_start=None, without_file=True, sr_audio=cfg.data.audio_sr)
        beat_vel = bc_fn.load_pose(top1_vertex, 0, n, pose_fps = 30, without_file=True)
        # print(n)
        # print(onset_bt)
        # print(beat_vel)
        bc_fn.calculate_align(onset_bt, beat_vel, 30)
        srgr_fn.run(gt_vertex, top1_vertex)
        
        gt_motion_tensor = rc.axis_angle_to_matrix(gt_motion_tensor.reshape(1, n, 55, 3))
        gt_motion_tensor = rc.matrix_to_rotation_6d(gt_motion_tensor).reshape(1, n, 55*6)
        top1_motion_tensor = rc.axis_angle_to_matrix(top1_motion_tensor.reshape(1, n, 55, 3))
        top1_motion_tensor = rc.matrix_to_rotation_6d(top1_motion_tensor).reshape(1, n, 55*6)
        remain = n % 32
        if remain != 0:
          gt_motion_tensor = gt_motion_tensor[:, :n-remain]
          top1_motion_tensor = top1_motion_tensor[:, :n-remain]
        # print(gt_motion_tensor.shape, top1_motion_tensor.shape)
        fgd_fn.update(gt_motion_tensor, top1_motion_tensor)
       
    metrics["fgd_top1"] = fgd_fn.compute()
    metrics["l1_top1"] = l1div_fn.avg()
    metrics["bc_top1"] = bc_fn.avg()
    metrics["srgr_top1"] = srgr_fn.avg()

    print(f"Test Metrics at Iteration {iteration}:")
    for key, value in metrics.items():
        print(f"{key}: {value:.6f}")
    return metrics


def compute_average_precision(feature1, feature2):
    # Normalize the features
    feature1 = F.normalize(feature1, dim=1)
    feature2 = F.normalize(feature2, dim=1)
    
    # Compute the similarity matrix
    similarity_matrix = torch.matmul(feature1, feature2.t())
    
    # Get the top-1 predicted indices for each feature in feature1
    top1_indices = torch.argmax(similarity_matrix, dim=1)
    
    # Generate ground truth labels (diagonal indices)
    batch_size = feature1.size(0)
    ground_truth = torch.arange(batch_size, device=feature1.device)
    
    # Compute the accuracy (True if the top-1 index matches the ground truth)
    correct_predictions = (top1_indices == ground_truth).float()
    
    # Compute average precision
    average_precision = correct_predictions.mean()
    
    return average_precision


class CosineSimilarityLoss(nn.Module):
    def __init__(self):
        super(CosineSimilarityLoss, self).__init__()
        self.cosine_similarity = nn.CosineSimilarity(dim=2)

    def forward(self, output1, output2):
        # Calculate cosine similarity
        cosine_sim = self.cosine_similarity(output1, output2)
        # Loss is 1 minus the average cosine similarity
        return 1 - cosine_sim.mean()

class InfoNCELossCross(nn.Module):
    def __init__(self, temperature=0.1):
        super(InfoNCELossCross, self).__init__()
        self.temperature = temperature
        self.criterion = nn.CrossEntropyLoss()

    def forward(self, feature1, feature2):
        """
        Args:
            feature1: tensor of shape (batch_size, feature_dim)
            feature2: tensor of shape (batch_size, feature_dim)
                      where each corresponding index in feature1 and feature2 is a positive pair,
                      and all other combinations are negative pairs.
        """
        batch_size = feature1.size(0)
        
        # Normalize feature vectors
        feature1 = F.normalize(feature1, dim=1)
        feature2 = F.normalize(feature2, dim=1)
        
        # Compute similarity matrix between feature1 and feature2
        similarity_matrix = torch.matmul(feature1, feature2.t()) / self.temperature
        
        # Labels for each element in feature1 are the indices of their matching pairs in feature2
        labels = torch.arange(batch_size, device=feature1.device)
        
        # Cross entropy loss for each positive pair with all corresponding negatives
        loss = self.criterion(similarity_matrix, labels)
        return loss


class LocalContrastiveLoss(nn.Module):
    def __init__(self, temperature=0.1):
        super(LocalContrastiveLoss, self).__init__()
        self.temperature = temperature

    def forward(self, motion_feature, audio_feature, learned_temp=None):
        if learned_temp is not None:
            temperature = learned_temp
        else:
            temperature = self.temperature
        batch_size, T, _ = motion_feature.size()
        assert len(motion_feature.shape) == 3

        motion_feature = F.normalize(motion_feature, dim=2)
        audio_feature = F.normalize(audio_feature, dim=2)

        motion_to_audio_loss = 0
        audio_to_motion_loss = 0
        motion_to_audio_correct = 0
        audio_to_motion_correct = 0

        # First pass: motion to audio
        for t in range(T):
            motion_feature_t = motion_feature[:, t, :]  # (bs, c)

            # Positive pair range for motion
            start = max(0, t - 4)
            end = min(T, t + 4)
            positive_audio_feature = audio_feature[:, start:end, :]  # (bs, pos_range, c)

            # Negative pair range for motion
            left_end = start
            left_start = max(0, left_end - 4 * 3)
            right_start = end
            right_end = min(T, right_start + 4 * 3)
            negative_audio_feature = torch.cat(
                [audio_feature[:, left_start:left_end, :], audio_feature[:, right_start:right_end, :]],
                dim=1
            )  # (bs, neg_range, c)

            # Concatenate positive and negative samples
            combined_audio_feature = torch.cat([positive_audio_feature, negative_audio_feature], dim=1)  # (bs, pos_range + neg_range, c)

            # Compute similarity scores
            logits = torch.matmul(motion_feature_t.unsqueeze(1), combined_audio_feature.transpose(1, 2)) / temperature  # (bs, 1, pos_range + neg_range)
            logits = logits.squeeze(1)  # (bs, pos_range + neg_range)

            # Compute InfoNCE loss
            positive_scores = logits[:, :positive_audio_feature.size(1)]
            loss_t = -positive_scores.logsumexp(dim=1) + torch.logsumexp(logits, dim=1)
            motion_to_audio_loss += loss_t.mean()

            # Compute accuracy
            max_indices = torch.argmax(logits, dim=1)
            correct_mask = (max_indices < positive_audio_feature.size(1)).float()  # Check if indices are within the range of positive samples
            motion_to_audio_correct += correct_mask.sum()

        # Second pass: audio to motion
        for t in range(T):
            audio_feature_t = audio_feature[:, t, :]  # (bs, c)

            # Positive pair range for audio
            start = max(0, t - 4)
            end = min(T, t + 4)
            positive_motion_feature = motion_feature[:, start:end, :]  # (bs, pos_range, c)

            # Negative pair range for audio
            left_end = start
            left_start = max(0, left_end - 4 * 3)
            right_start = end
            right_end = min(T, right_start + 4 * 3)
            negative_motion_feature = torch.cat(
                [motion_feature[:, left_start:left_end, :], motion_feature[:, right_start:right_end, :]],
                dim=1
            )  # (bs, neg_range, c)

            # Concatenate positive and negative samples
            combined_motion_feature = torch.cat([positive_motion_feature, negative_motion_feature], dim=1)  # (bs, pos_range + neg_range, c)

            # Compute similarity scores
            logits = torch.matmul(audio_feature_t.unsqueeze(1), combined_motion_feature.transpose(1, 2)) / temperature  # (bs, 1, pos_range + neg_range)
            logits = logits.squeeze(1)  # (bs, pos_range + neg_range)

            # Compute InfoNCE loss
            positive_scores = logits[:, :positive_motion_feature.size(1)]
            loss_t = -positive_scores.logsumexp(dim=1) + torch.logsumexp(logits, dim=1)
            audio_to_motion_loss += loss_t.mean()

            # Compute accuracy
            max_indices = torch.argmax(logits, dim=1)
            correct_mask = (max_indices < positive_motion_feature.size(1)).float()  # Check if indices are within the range of positive samples
            audio_to_motion_correct += correct_mask.sum()


        # Average the two losses
        final_loss = (motion_to_audio_loss + audio_to_motion_loss) / (2 * T)

        # Compute final accuracy
        total_correct = (motion_to_audio_correct + audio_to_motion_correct) / (2 * T * batch_size)
        
        return final_loss, total_correct



class InfoNCELoss(nn.Module):
    def __init__(self, temperature=0.1):
        super(InfoNCELoss, self).__init__()
        self.temperature = temperature

    def forward(self, feature1, feature2, learned_temp=None):
        batch_size = feature1.size(0)
        assert len(feature1.shape) == 2
        if learned_temp is not None:
            temperature = learned_temp
        else:
            temperature = self.temperature
        # Normalize feature vectors
        feature1 = F.normalize(feature1, dim=1)
        feature2 = F.normalize(feature2, dim=1)
        # Compute similarity matrix between feature1 and feature2
        similarity_matrix = torch.matmul(feature1, feature2.t()) / temperature
        # Extract positive similarities (diagonal elements)
        positive_similarities = torch.diag(similarity_matrix)
        # Compute the denominator using logsumexp for numerical stability
        denominator = torch.logsumexp(similarity_matrix, dim=1)
        # Compute the InfoNCE loss
        loss = - (positive_similarities - denominator).mean()
        return loss
      

def main(cfg):
    if "LOCAL_RANK" in os.environ:
        local_rank = int(os.environ["LOCAL_RANK"])
    else:
        local_rank = 0  

    torch.cuda.set_device(local_rank)
    device = torch.device("cuda", local_rank)
    torch.distributed.init_process_group(backend="nccl")
    seed_everything(cfg.seed)

    experiment_ckpt_dir = experiment_log_dir = os.path.join(cfg.output_dir, cfg.exp_name)

    smplx_model = smplx.create(
            "./emage/smplx_models/", 
            model_type='smplx',
            gender='NEUTRAL_2020', 
            use_face_contour=False,
            num_betas=300,
            num_expression_coeffs=100, 
            ext='npz',
            use_pca=False,
        ).to(device).eval()

    model = init_class(cfg.model.name_pyfile, cfg.model.class_name, cfg).cuda()
    for param in model.parameters():
        param.requires_grad = True
    # freeze wav2vec2
    for param in model.audio_encoder.parameters():
        param.requires_grad = False
    model.smplx_model = smplx_model
    model.get_motion_reps = get_motion_reps_tensor
    model.high_level_loss_fn = InfoNCELoss()
    model.low_level_loss_fn = LocalContrastiveLoss()
      
    model = DDP(
        model,
        device_ids=[local_rank],
        output_device=local_rank,
        find_unused_parameters=True,
    )

    if cfg.solver.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
            )
        optimizer_cls = bnb.optim.AdamW8bit
        print("using 8 bit")
    else:
        optimizer_cls = torch.optim.AdamW


    optimizer = optimizer_cls(filter(lambda p: p.requires_grad, model.parameters()), lr=cfg.solver.learning_rate,
        betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2),
        weight_decay=cfg.solver.adam_weight_decay,
        eps=cfg.solver.adam_epsilon,)
    lr_scheduler = get_scheduler(
        cfg.solver.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=cfg.solver.lr_warmup_steps
        * cfg.solver.gradient_accumulation_steps,
        num_training_steps=cfg.solver.max_train_steps
        * cfg.solver.gradient_accumulation_steps,
    )

    loss_cosine = CosineSimilarityLoss().to(device)
    loss_mse = nn.MSELoss().to(device)
    loss_l1 = nn.L1Loss().to(device)
    loss_infonce = InfoNCELossCross().to(device)
    loss_fn_dict = {
        "loss_cosine": loss_cosine,
        "loss_mse": loss_mse,
        "loss_l1": loss_l1,
        "loss_infonce": loss_infonce,
    }
    
    fgd_fn = emage.mertic.FGD(download_path="./emage/")
    srgr_fn = emage.mertic.SRGR(threshold=0.3, joints=55, joint_dim=3)
    bc_fn = emage.mertic.BC(download_path="./emage/", sigma=0.5, order=7)
    l1div_fn = emage.mertic.L1div()

    train_dataset = init_class(cfg.data.name_pyfile, cfg.data.class_name, cfg, split='train')
    test_dataset = init_class(cfg.data.name_pyfile, cfg.data.class_name, cfg, split='test')
    train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    train_loader = DataLoader(train_dataset, batch_size=cfg.data.train_bs, sampler=train_sampler, drop_last=True, num_workers=4)
    test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
    test_loader = DataLoader(test_dataset, batch_size=256, sampler=test_sampler, drop_last=False, num_workers=4)

    if local_rank == 0:
        run_time = datetime.now().strftime("%Y%m%d-%H%M")
        wandb.init(
            project=cfg.wandb_project,
            name=cfg.exp_name + "_" + run_time,
            entity=cfg.wandb_entity,
            dir=cfg.wandb_log_dir,
            config=OmegaConf.to_container(cfg)  # Pass config directly during initialization
        )
    else:
        writer = None
    
    num_epochs = cfg.solver.max_train_steps // len(train_loader) + 1
    iteration = 0
    val_best = {}
    test_best = {}

    # checkpoint_path = "/content/drive/MyDrive/005_Weights/baseline_high_env0/checkpoint_3800/ckpt.pth"
    # checkpoint = torch.load(checkpoint_path)
    # state_dict = checkpoint['model_state_dict']
    # #new_state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
    # model.load_state_dict(state_dict, strict=False)
    # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    # lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
    # iteration = checkpoint["iteration"]

    for epoch in range(num_epochs):
        train_sampler.set_epoch(epoch)

        for i, batch in enumerate(train_loader):
            loss_dict = train_val_fn(
                batch, model, device, mode="train", optimizer=optimizer, lr_scheduler=lr_scheduler,
                loss_fn_dict=loss_fn_dict
            )
            if local_rank == 0 and iteration % cfg.log_period == 0:
                for key, value in loss_dict.items():
                    # writer.add_scalar(f"train/{key}", value, iteration)
                    wandb.log({f"train/{key}": value}, step=iteration)
                loss_message = ", ".join([f"{k}: {v:.6f}" for k, v in loss_dict.items()])
                print(f"Epoch {epoch} [{i}/{len(train_loader)}] - {loss_message}")

            if local_rank == 0 and iteration % cfg.validation.val_loss_steps == 0:
                val_loss_dict = {}
                val_batches = 0
                for batch in tqdm(test_loader):
                    loss_dict = train_val_fn(
                        batch, model, device, mode="val", optimizer=optimizer, lr_scheduler=lr_scheduler,
                        loss_fn_dict=loss_fn_dict
                    )
                    for k, v in loss_dict.items():
                        if k not in val_loss_dict:
                            val_loss_dict[k] = 0
                        val_loss_dict[k] += v.item()  # Convert to float for accumulation
                    val_batches += 1
                    if val_batches == 10:
                        break
                val_loss_mean_dict = {k: v / val_batches for k, v in val_loss_dict.items()}
                for k, v in val_loss_mean_dict.items():
                    if k not in val_best or v > val_best[k]["value"]:
                        val_best[k] = {"value": v, "iteration": iteration}
                        if "acc" in k:
                            checkpoint_path = os.path.join(experiment_ckpt_dir, f"ckpt_{k}")
                            os.makedirs(checkpoint_path, exist_ok=True)
                            torch.save({
                                'iteration': iteration,
                                'model_state_dict': model.state_dict(),
                                'optimizer_state_dict': optimizer.state_dict(),
                                'lr_scheduler_state_dict': lr_scheduler.state_dict(),
                            }, os.path.join(checkpoint_path, "ckpt.pth"))

                    print(f"Val [{iteration}] - {k}: {v:.6f} (best: {val_best[k]['value']:.6f} at {val_best[k]['iteration']})")
                    # writer.add_scalar(f"val/{k}", v, iteration)
                    wandb.log({f"val/{k}": v}, step=iteration)
        
                checkpoint_path = os.path.join(experiment_ckpt_dir, f"checkpoint_{iteration}")
                os.makedirs(checkpoint_path, exist_ok=True)
                torch.save({
                    'iteration': iteration,
                    'model_state_dict': model.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'lr_scheduler_state_dict': lr_scheduler.state_dict(),
                }, os.path.join(checkpoint_path, "ckpt.pth"))
                checkpoints = [d for d in os.listdir(experiment_ckpt_dir) if os.path.isdir(os.path.join(experiment_ckpt_dir, d)) and d.startswith("checkpoint_")]
                checkpoints.sort(key=lambda x: int(x.split("_")[1]))
                if len(checkpoints) > 3:
                    for ckpt_to_delete in checkpoints[:-3]:
                        shutil.rmtree(os.path.join(experiment_ckpt_dir, ckpt_to_delete))

            # if local_rank == 0 and iteration % cfg.validation.validation_steps == 0:
            #     test_path = os.path.join(experiment_ckpt_dir, f"test_{iteration}")
            #     os.makedirs(test_path, exist_ok=True)
            #     test_mertic_dict = test_fn(model, device, smplx_model, iteration, fgd_fn, srgr_fn, bc_fn, l1div_fn, cfg.data.test_meta_paths, test_path, cfg)
            #     for k, v in test_mertic_dict.items():
            #         if k not in test_best or v < test_best[k]["value"]:
            #             test_best[k] = {"value": v, "iteration": iteration}  
            #         print(f"Test [{iteration}] - {k}: {v:.6f} (best: {test_best[k]['value']:.6f} at {test_best[k]['iteration']})")
            #         # writer.add_scalar(f"test/{k}", v, iteration)
            #         wandb.log({f"test/{k}": v}, step=iteration)
            #     video_for_log = []
            #     video_res_path = os.path.join(test_path, f"retrieved_motions_{iteration}")
            #     for mp4_file in os.listdir(video_res_path):
            #         if mp4_file.endswith(".mp4"):
            #             # print(mp4_file)
            #             file_path = os.path.join(video_res_path, mp4_file)
            #             log_video = wandb.Video(file_path, caption=f"{iteration:06d}-{mp4_file}", format="mp4")
            #             video_for_log.append(log_video)
            #     wandb.log(
            #       {"test/videos": video_for_log},
            #       step=iteration
            #     )
                # visualize_fn(test_path)
            iteration += 1

    if local_rank == 0:
        writer.close()
    torch.distributed.destroy_process_group()


def init_class(module_name, class_name, config, **kwargs):
    module = importlib.import_module(module_name)
    model_class = getattr(module, class_name)
    instance = model_class(config, **kwargs)
    return instance


def seed_everything(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def visualize_fn(test_path, **kwargs):
    with open(test_path, 'r') as f:
        test_json = json.load(f)
    # load top10_indices from json
    selected_video_path_list = []
    # load video list from json
    with open(test_path, 'r') as f:
        video_list = json.load(f)["video_candidates"]

    for idx, data in enumerate(test_json.items()):
        top10_indices_path = os.path.join(test_path, f"audio_{idx}_retri_top10.json")
        with open(top10_indices_path, 'r') as f:
            top10_indices = json.load(f)["top10_indices"]
        selected_video_path_list.append(video_list[top10_indices[0]])
        # moviepy load and add audio
        video = VideoFileClip(video_list[top10_indices[0]])
        audio = AudioFileClip(data["audio_path"])
        video = video.set_audio(audio)
        video.write_videofile(f"audio_{idx}_retri_top1.mp4")
        video.close()


def prepare_all():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/train/stage2.yaml")
    parser.add_argument("--debug", action="store_true", help="Enable debugging mode")
    parser.add_argument('overrides', nargs=argparse.REMAINDER)
    args = parser.parse_args()

    if args.config.endswith(".yaml"):
        config = OmegaConf.load(args.config)
        # config.wandb_project = args.config.split("-")[1]
        config.exp_name = args.config.split("/")[-1][:-5]
    else:
        raise ValueError("Unsupported config file format. Only .yaml files are allowed.")

    if args.debug:
        config.wandb_project = "debug"
        config.exp_name = "debug"
        config.solver.max_train_steps = 4

    if args.overrides:
        for arg in args.overrides:
            key, value = arg.split('=')
            try:
                value = eval(value)
            except:
                pass
            if key in config:
                config[key] = value
            else:
                raise ValueError(f"Key {key} not found in config.")
    
    os.environ["WANDB_API_KEY"] = config.wandb_key

    save_dir = os.path.join(config.output_dir, config.exp_name)
    os.makedirs(save_dir, exist_ok=True)
    os.makedirs(os.path.join(save_dir, 'sanity_check'), exist_ok=True)

    config_path = os.path.join(save_dir, 'sanity_check', f'{config.exp_name}.yaml')
    with open(config_path, 'w') as f:
        OmegaConf.save(config, f)

    current_dir = os.path.dirname(os.path.abspath(__file__))
    sanity_check_dir = os.path.join(save_dir, 'sanity_check')
    for root, dirs, files in os.walk(current_dir):
        for file in files:
            if file.endswith(".py"):
                full_file_path = os.path.join(root, file)
                relative_path = os.path.relpath(full_file_path, current_dir)
                dest_path = os.path.join(sanity_check_dir, relative_path)
                os.makedirs(os.path.dirname(dest_path), exist_ok=True)
                shutil.copy(full_file_path, dest_path)
    return config


if __name__ == "__main__":
    config = prepare_all()
    main(config)