|
import gradio as gr |
|
import torch |
|
import spaces |
|
import numpy as np |
|
import random |
|
import os |
|
import yaml |
|
from pathlib import Path |
|
import imageio |
|
import tempfile |
|
from PIL import Image |
|
from huggingface_hub import hf_hub_download |
|
import shutil |
|
|
|
from inference import ( |
|
create_ltx_video_pipeline, |
|
create_latent_upsampler, |
|
load_image_to_tensor_with_resize_and_crop, |
|
seed_everething, |
|
get_device, |
|
calculate_padding, |
|
load_media_file |
|
) |
|
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline |
|
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy |
|
|
|
config_file_path = "configs/ltxv-13b-0.9.7-distilled.yaml" |
|
with open(config_file_path, "r") as file: |
|
PIPELINE_CONFIG_YAML = yaml.safe_load(file) |
|
|
|
LTX_REPO = "Lightricks/LTX-Video" |
|
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280) |
|
MAX_NUM_FRAMES = 257 |
|
|
|
FPS = 30.0 |
|
|
|
|
|
pipeline_instance = None |
|
latent_upsampler_instance = None |
|
models_dir = "downloaded_models_gradio_cpu_init" |
|
Path(models_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
print("Downloading models (if not present)...") |
|
distilled_model_actual_path = hf_hub_download( |
|
repo_id=LTX_REPO, |
|
filename=PIPELINE_CONFIG_YAML["checkpoint_path"], |
|
local_dir=models_dir, |
|
local_dir_use_symlinks=False |
|
) |
|
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path |
|
print(f"Distilled model path: {distilled_model_actual_path}") |
|
|
|
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] |
|
spatial_upscaler_actual_path = hf_hub_download( |
|
repo_id=LTX_REPO, |
|
filename=SPATIAL_UPSCALER_FILENAME, |
|
local_dir=models_dir, |
|
local_dir_use_symlinks=False |
|
) |
|
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path |
|
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}") |
|
|
|
print("Creating LTX Video pipeline on CPU...") |
|
pipeline_instance = create_ltx_video_pipeline( |
|
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"], |
|
precision=PIPELINE_CONFIG_YAML["precision"], |
|
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], |
|
sampler=PIPELINE_CONFIG_YAML["sampler"], |
|
device="cpu", |
|
enhance_prompt=False, |
|
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"], |
|
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"], |
|
) |
|
print("LTX Video pipeline created on CPU.") |
|
|
|
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"): |
|
print("Creating latent upsampler on CPU...") |
|
latent_upsampler_instance = create_latent_upsampler( |
|
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"], |
|
device="cpu" |
|
) |
|
print("Latent upsampler created on CPU.") |
|
|
|
target_inference_device = "cuda" |
|
print(f"Target inference device: {target_inference_device}") |
|
pipeline_instance.to(target_inference_device) |
|
if latent_upsampler_instance: |
|
latent_upsampler_instance.to(target_inference_device) |
|
|
|
|
|
|
|
MIN_DIM_SLIDER = 256 |
|
TARGET_FIXED_SIDE = 768 |
|
|
|
def calculate_new_dimensions(orig_w, orig_h): |
|
""" |
|
Calculates new dimensions for height and width sliders based on original media dimensions. |
|
Ensures one side is TARGET_FIXED_SIDE, the other is scaled proportionally, |
|
both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]. |
|
""" |
|
if orig_w == 0 or orig_h == 0: |
|
|
|
return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE) |
|
|
|
if orig_w >= orig_h: |
|
new_h = TARGET_FIXED_SIDE |
|
aspect_ratio = orig_w / orig_h |
|
new_w_ideal = new_h * aspect_ratio |
|
|
|
|
|
new_w = round(new_w_ideal / 32) * 32 |
|
|
|
|
|
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE)) |
|
|
|
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE)) |
|
else: |
|
new_w = TARGET_FIXED_SIDE |
|
aspect_ratio = orig_h / orig_w |
|
new_h_ideal = new_w * aspect_ratio |
|
|
|
|
|
new_h = round(new_h_ideal / 32) * 32 |
|
|
|
|
|
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE)) |
|
|
|
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE)) |
|
|
|
return int(new_h), int(new_w) |
|
|
|
def get_duration(prompt, negative_prompt, input_image_filepath, input_video_filepath, |
|
height_ui, width_ui, mode, |
|
duration_ui, |
|
ui_frames_to_use, |
|
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag, |
|
progress): |
|
if duration_ui > 7: |
|
return 75 |
|
else: |
|
return 60 |
|
|
|
@spaces.GPU(duration=get_duration) |
|
def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath, |
|
height_ui, width_ui, mode, |
|
duration_ui, |
|
ui_frames_to_use, |
|
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag, |
|
progress=gr.Progress(track_tqdm=True)): |
|
|
|
if randomize_seed: |
|
seed_ui = random.randint(0, 2**32 - 1) |
|
seed_everething(int(seed_ui)) |
|
|
|
target_frames_ideal = duration_ui * FPS |
|
target_frames_rounded = round(target_frames_ideal) |
|
if target_frames_rounded < 1: |
|
target_frames_rounded = 1 |
|
|
|
n_val = round((float(target_frames_rounded) - 1.0) / 8.0) |
|
actual_num_frames = int(n_val * 8 + 1) |
|
|
|
actual_num_frames = max(9, actual_num_frames) |
|
actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames) |
|
|
|
actual_height = int(height_ui) |
|
actual_width = int(width_ui) |
|
|
|
height_padded = ((actual_height - 1) // 32 + 1) * 32 |
|
width_padded = ((actual_width - 1) // 32 + 1) * 32 |
|
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1 |
|
if num_frames_padded != actual_num_frames: |
|
print(f"Warning: actual_num_frames ({actual_num_frames}) and num_frames_padded ({num_frames_padded}) differ. Using num_frames_padded for pipeline.") |
|
|
|
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded) |
|
|
|
call_kwargs = { |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"height": height_padded, |
|
"width": width_padded, |
|
"num_frames": num_frames_padded, |
|
"frame_rate": int(FPS), |
|
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)), |
|
"output_type": "pt", |
|
"conditioning_items": None, |
|
"media_items": None, |
|
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"], |
|
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"], |
|
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"], |
|
"image_cond_noise_scale": 0.15, |
|
"is_video": True, |
|
"vae_per_channel_normalize": True, |
|
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"), |
|
"offload_to_cpu": False, |
|
"enhance_prompt": False, |
|
} |
|
|
|
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values") |
|
if stg_mode_str.lower() in ["stg_av", "attention_values"]: |
|
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues |
|
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]: |
|
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip |
|
elif stg_mode_str.lower() in ["stg_r", "residual"]: |
|
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual |
|
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]: |
|
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock |
|
else: |
|
raise ValueError(f"Invalid stg_mode: {stg_mode_str}") |
|
|
|
if mode == "image-to-video" and input_image_filepath: |
|
try: |
|
media_tensor = load_image_to_tensor_with_resize_and_crop( |
|
input_image_filepath, actual_height, actual_width |
|
) |
|
media_tensor = torch.nn.functional.pad(media_tensor, padding_values) |
|
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)] |
|
except Exception as e: |
|
print(f"Error loading image {input_image_filepath}: {e}") |
|
raise gr.Error(f"Could not load image: {e}") |
|
elif mode == "video-to-video" and input_video_filepath: |
|
try: |
|
call_kwargs["media_items"] = load_media_file( |
|
media_path=input_video_filepath, |
|
height=actual_height, |
|
width=actual_width, |
|
max_frames=int(ui_frames_to_use), |
|
padding=padding_values |
|
).to(target_inference_device) |
|
except Exception as e: |
|
print(f"Error loading video {input_video_filepath}: {e}") |
|
raise gr.Error(f"Could not load video: {e}") |
|
|
|
print(f"Moving models to {target_inference_device} for inference (if not already there)...") |
|
|
|
active_latent_upsampler = None |
|
if improve_texture_flag and latent_upsampler_instance: |
|
active_latent_upsampler = latent_upsampler_instance |
|
|
|
result_images_tensor = None |
|
if improve_texture_flag: |
|
if not active_latent_upsampler: |
|
raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.") |
|
|
|
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler) |
|
|
|
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy() |
|
first_pass_args["guidance_scale"] = float(ui_guidance_scale) |
|
|
|
first_pass_args.pop("num_inference_steps", None) |
|
|
|
|
|
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy() |
|
second_pass_args["guidance_scale"] = float(ui_guidance_scale) |
|
|
|
second_pass_args.pop("num_inference_steps", None) |
|
|
|
multi_scale_call_kwargs = call_kwargs.copy() |
|
multi_scale_call_kwargs.update({ |
|
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"], |
|
"first_pass": first_pass_args, |
|
"second_pass": second_pass_args, |
|
}) |
|
|
|
print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}") |
|
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images |
|
else: |
|
single_pass_call_kwargs = call_kwargs.copy() |
|
first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {}) |
|
|
|
single_pass_call_kwargs["timesteps"] = first_pass_config_from_yaml.get("timesteps") |
|
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale) |
|
single_pass_call_kwargs["stg_scale"] = first_pass_config_from_yaml.get("stg_scale") |
|
single_pass_call_kwargs["rescaling_scale"] = first_pass_config_from_yaml.get("rescaling_scale") |
|
single_pass_call_kwargs["skip_block_list"] = first_pass_config_from_yaml.get("skip_block_list") |
|
|
|
|
|
single_pass_call_kwargs.pop("num_inference_steps", None) |
|
single_pass_call_kwargs.pop("first_pass", None) |
|
single_pass_call_kwargs.pop("second_pass", None) |
|
single_pass_call_kwargs.pop("downscale_factor", None) |
|
|
|
print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}") |
|
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images |
|
|
|
if result_images_tensor is None: |
|
raise gr.Error("Generation failed.") |
|
|
|
pad_left, pad_right, pad_top, pad_bottom = padding_values |
|
slice_h_end = -pad_bottom if pad_bottom > 0 else None |
|
slice_w_end = -pad_right if pad_right > 0 else None |
|
|
|
result_images_tensor = result_images_tensor[ |
|
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end |
|
] |
|
|
|
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() |
|
|
|
video_np = np.clip(video_np, 0, 1) |
|
video_np = (video_np * 255).astype(np.uint8) |
|
|
|
temp_dir = tempfile.mkdtemp() |
|
timestamp = random.randint(10000,99999) |
|
output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4") |
|
|
|
try: |
|
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer: |
|
for frame_idx in range(video_np.shape[0]): |
|
progress(frame_idx / video_np.shape[0], desc="Saving video") |
|
video_writer.append_data(video_np[frame_idx]) |
|
except Exception as e: |
|
print(f"Error saving video with macro_block_size=1: {e}") |
|
try: |
|
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer: |
|
for frame_idx in range(video_np.shape[0]): |
|
progress(frame_idx / video_np.shape[0], desc="Saving video (fallback ffmpeg)") |
|
video_writer.append_data(video_np[frame_idx]) |
|
except Exception as e2: |
|
print(f"Fallback video saving error: {e2}") |
|
raise gr.Error(f"Failed to save video: {e2}") |
|
|
|
return output_video_path, seed_ui |
|
|
|
def update_task_image(): |
|
return "image-to-video" |
|
|
|
def update_task_text(): |
|
return "text-to-video" |
|
|
|
def update_task_video(): |
|
return "video-to-video" |
|
|
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 900px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown("# LTX Video 0.9.7 Distilled") |
|
gr.Markdown("Fast high quality video generation. [Model](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-distilled.safetensors) [GitHub](https://github.com/Lightricks/LTX-Video) [Diffusers](https://huggingface.co/Lightricks/LTX-Video-0.9.7-distilled#diffusers-🧨)") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Tab("image-to-video") as image_tab: |
|
video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None) |
|
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam", "clipboard"]) |
|
i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3) |
|
i2v_button = gr.Button("Generate Image-to-Video", variant="primary") |
|
with gr.Tab("text-to-video") as text_tab: |
|
image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None) |
|
video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None) |
|
t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3) |
|
t2v_button = gr.Button("Generate Text-to-Video", variant="primary") |
|
with gr.Tab("video-to-video", visible=False) as video_tab: |
|
image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None) |
|
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"]) |
|
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.") |
|
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3) |
|
v2v_button = gr.Button("Generate Video-to-Video", variant="primary") |
|
|
|
duration_input = gr.Slider( |
|
label="Video Duration (seconds)", |
|
minimum=0.3, |
|
maximum=8.5, |
|
value=2, |
|
step=0.1, |
|
info=f"Target video duration (0.3s to 8.5s)" |
|
) |
|
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True, info="Uses a two-pass generation for better quality, but is slower. Recommended for final output.") |
|
|
|
with gr.Column(): |
|
output_video = gr.Video(label="Generated Video", interactive=False) |
|
|
|
|
|
with gr.Accordion("Advanced settings", open=False): |
|
mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False) |
|
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2) |
|
with gr.Row(): |
|
seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1) |
|
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True) |
|
with gr.Row(): |
|
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.") |
|
with gr.Row(): |
|
height_input = gr.Slider(label="Height", value=512, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.") |
|
width_input = gr.Slider(label="Width", value=704, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.") |
|
|
|
|
|
|
|
def handle_image_upload_for_dims(image_filepath, current_h, current_w): |
|
if not image_filepath: |
|
|
|
return gr.update(value=current_h), gr.update(value=current_w) |
|
try: |
|
img = Image.open(image_filepath) |
|
orig_w, orig_h = img.size |
|
new_h, new_w = calculate_new_dimensions(orig_w, orig_h) |
|
return gr.update(value=new_h), gr.update(value=new_w) |
|
except Exception as e: |
|
print(f"Error processing image for dimension update: {e}") |
|
|
|
return gr.update(value=current_h), gr.update(value=current_w) |
|
|
|
def handle_video_upload_for_dims(video_filepath, current_h, current_w): |
|
if not video_filepath: |
|
return gr.update(value=current_h), gr.update(value=current_w) |
|
try: |
|
|
|
video_filepath_str = str(video_filepath) |
|
if not os.path.exists(video_filepath_str): |
|
print(f"Video file path does not exist for dimension update: {video_filepath_str}") |
|
return gr.update(value=current_h), gr.update(value=current_w) |
|
|
|
orig_w, orig_h = -1, -1 |
|
with imageio.get_reader(video_filepath_str) as reader: |
|
meta = reader.get_meta_data() |
|
if 'size' in meta: |
|
orig_w, orig_h = meta['size'] |
|
else: |
|
|
|
try: |
|
first_frame = reader.get_data(0) |
|
|
|
orig_h, orig_w = first_frame.shape[0], first_frame.shape[1] |
|
except Exception as e_frame: |
|
print(f"Could not get video size from metadata or first frame: {e_frame}") |
|
return gr.update(value=current_h), gr.update(value=current_w) |
|
|
|
if orig_w == -1 or orig_h == -1: |
|
print(f"Could not determine dimensions for video: {video_filepath_str}") |
|
return gr.update(value=current_h), gr.update(value=current_w) |
|
|
|
new_h, new_w = calculate_new_dimensions(orig_w, orig_h) |
|
return gr.update(value=new_h), gr.update(value=new_w) |
|
except Exception as e: |
|
|
|
print(f"Error processing video for dimension update: {e} (Path: {video_filepath}, Type: {type(video_filepath)})") |
|
return gr.update(value=current_h), gr.update(value=current_w) |
|
|
|
|
|
image_i2v.upload( |
|
fn=handle_image_upload_for_dims, |
|
inputs=[image_i2v, height_input, width_input], |
|
outputs=[height_input, width_input] |
|
) |
|
video_v2v.upload( |
|
fn=handle_video_upload_for_dims, |
|
inputs=[video_v2v, height_input, width_input], |
|
outputs=[height_input, width_input] |
|
) |
|
|
|
image_tab.select( |
|
fn=update_task_image, |
|
outputs=[mode] |
|
) |
|
text_tab.select( |
|
fn=update_task_text, |
|
outputs=[mode] |
|
) |
|
|
|
t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden, |
|
height_input, width_input, mode, |
|
duration_input, frames_to_use, |
|
seed_input, randomize_seed_input, guidance_scale_input, improve_texture] |
|
|
|
i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden, |
|
height_input, width_input, mode, |
|
duration_input, frames_to_use, |
|
seed_input, randomize_seed_input, guidance_scale_input, improve_texture] |
|
|
|
v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v, |
|
height_input, width_input, mode, |
|
duration_input, frames_to_use, |
|
seed_input, randomize_seed_input, guidance_scale_input, improve_texture] |
|
|
|
t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video, seed_input], api_name="text_to_video") |
|
i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video, seed_input], api_name="image_to_video") |
|
v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video, seed_input], api_name="video_to_video") |
|
|
|
if __name__ == "__main__": |
|
if os.path.exists(models_dir) and os.path.isdir(models_dir): |
|
print(f"Model directory: {Path(models_dir).resolve()}") |
|
|
|
demo.queue().launch(debug=True, share=False, mcp_server=True) |