Updated agent.py
Browse files
agent.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""LangGraph Agent"""
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
import cmath
|
5 |
+
import pandas as pd
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
8 |
+
from langgraph.prebuilt import tools_condition
|
9 |
+
from langgraph.prebuilt import ToolNode
|
10 |
+
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
|
11 |
+
from langchain_groq import ChatGroq
|
12 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
13 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
14 |
+
from langchain_community.document_loaders import WikipediaLoader
|
15 |
+
from langchain_community.document_loaders import ArxivLoader
|
16 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
17 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
18 |
+
from langchain_core.tools import tool
|
19 |
+
from langchain.tools.retriever import create_retriever_tool
|
20 |
+
from supabase.client import Client, create_client
|
21 |
+
from typing import List, Dict, Any, Optional
|
22 |
+
|
23 |
+
load_dotenv()
|
24 |
+
|
25 |
+
@tool
|
26 |
+
def multiply(a: int, b: int) -> int:
|
27 |
+
"""
|
28 |
+
Multiply two integers.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
a (int): The first integer.
|
32 |
+
b (int): The second integer.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
int: The product of a and b.
|
36 |
+
"""
|
37 |
+
return a * b
|
38 |
+
|
39 |
+
@tool
|
40 |
+
def add(a: int, b: int) -> int:
|
41 |
+
"""
|
42 |
+
Add two integers.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
a (int): The first integer.
|
46 |
+
b (int): The second integer.
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
int: The sum of a and b.
|
50 |
+
"""
|
51 |
+
return a + b
|
52 |
+
|
53 |
+
@tool
|
54 |
+
def subtract(a: int, b: int) -> int:
|
55 |
+
"""
|
56 |
+
Subtract one integer from another.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
a (int): The integer to subtract from.
|
60 |
+
b (int): The integer to subtract.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
int: The result of a minus b.
|
64 |
+
"""
|
65 |
+
return a - b
|
66 |
+
|
67 |
+
@tool
|
68 |
+
def divide(a: int, b: int) -> float:
|
69 |
+
"""
|
70 |
+
Divide one integer by another.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
a (int): The numerator.
|
74 |
+
b (int): The denominator. Must not be zero.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
float: The result of a divided by b.
|
78 |
+
|
79 |
+
Raises:
|
80 |
+
ValueError: If b is zero.
|
81 |
+
"""
|
82 |
+
if b == 0:
|
83 |
+
raise ValueError("Cannot divide by zero.")
|
84 |
+
return a / b
|
85 |
+
|
86 |
+
@tool
|
87 |
+
def modulus(a: int, b: int) -> int:
|
88 |
+
"""
|
89 |
+
Compute the modulus (remainder) of two integers.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
a (int): The dividend.
|
93 |
+
b (int): The divisor.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
int: The remainder after dividing a by b.
|
97 |
+
"""
|
98 |
+
return a % b
|
99 |
+
|
100 |
+
@tool
|
101 |
+
def power(a: float, b: float) -> float:
|
102 |
+
"""
|
103 |
+
Raise a number to the power of another number.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
a (float): The base number.
|
107 |
+
b (float): The exponent.
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
float: The result of a raised to the power of b.
|
111 |
+
"""
|
112 |
+
return a**b
|
113 |
+
|
114 |
+
@tool
|
115 |
+
def square_root(a: float) -> float | complex:
|
116 |
+
"""
|
117 |
+
Compute the square root of a number. Returns a complex number if input is negative.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
a (float): The number to compute the square root of.
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
float or complex: The square root of a. Complex if a < 0.
|
124 |
+
"""
|
125 |
+
if a >= 0:
|
126 |
+
return a**0.5
|
127 |
+
return cmath.sqrt(a)
|
128 |
+
|
129 |
+
### =============== DOCUMENT PROCESSING TOOLS =============== ###
|
130 |
+
|
131 |
+
@tool
|
132 |
+
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
|
133 |
+
"""
|
134 |
+
Save text content to a file and return the file path.
|
135 |
+
|
136 |
+
Args:
|
137 |
+
content (str): The text content to save.
|
138 |
+
filename (str, optional): The name of the file. If not provided, a random name is generated.
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
str: The file path where the content was saved.
|
142 |
+
"""
|
143 |
+
temp_dir = tempfile.gettempdir()
|
144 |
+
if filename is None:
|
145 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
|
146 |
+
filepath = temp_file.name
|
147 |
+
else:
|
148 |
+
filepath = os.path.join(temp_dir, filename)
|
149 |
+
|
150 |
+
with open(filepath, "w") as f:
|
151 |
+
f.write(content)
|
152 |
+
|
153 |
+
return f"File saved to {filepath}. You can read this file to process its contents."
|
154 |
+
|
155 |
+
@tool
|
156 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
157 |
+
"""
|
158 |
+
Analyze a CSV file and answer a question about its data.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
file_path (str): The path to the CSV file.
|
162 |
+
query (str): The question to answer about the data.
|
163 |
+
|
164 |
+
Returns:
|
165 |
+
str: The analysis result or error message.
|
166 |
+
"""
|
167 |
+
try:
|
168 |
+
df = pd.read_csv(file_path)
|
169 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
170 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
171 |
+
result += "Summary statistics:\n"
|
172 |
+
result += str(df.describe())
|
173 |
+
return result
|
174 |
+
except Exception as e:
|
175 |
+
return f"Error analyzing CSV file: {str(e)}"
|
176 |
+
|
177 |
+
@tool
|
178 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
179 |
+
"""
|
180 |
+
Analyze an Excel file and answer a question about its data.
|
181 |
+
|
182 |
+
Args:
|
183 |
+
file_path (str): The path to the Excel file.
|
184 |
+
query (str): The question to answer about the data.
|
185 |
+
|
186 |
+
Returns:
|
187 |
+
str: The analysis result or error message.
|
188 |
+
"""
|
189 |
+
try:
|
190 |
+
df = pd.read_excel(file_path)
|
191 |
+
result = (
|
192 |
+
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
193 |
+
)
|
194 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
195 |
+
result += "Summary statistics:\n"
|
196 |
+
result += str(df.describe())
|
197 |
+
return result
|
198 |
+
except Exception as e:
|
199 |
+
return f"Error analyzing Excel file: {str(e)}"
|
200 |
+
|
201 |
+
@tool
|
202 |
+
def wiki_search(input: str) -> str:
|
203 |
+
"""
|
204 |
+
Search Wikipedia for a query and return up to 2 results.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
input (str): The search query string.
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
str: A formatted string containing up to 2 Wikipedia search results.
|
211 |
+
"""
|
212 |
+
search_docs = WikipediaLoader(query=input, load_max_docs=2).load()
|
213 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
214 |
+
[
|
215 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
216 |
+
for doc in search_docs
|
217 |
+
])
|
218 |
+
return {"wiki_results": formatted_search_docs}
|
219 |
+
|
220 |
+
@tool
|
221 |
+
def web_search(input: str) -> str:
|
222 |
+
"""
|
223 |
+
Search the web using Tavily and return up to 5 results.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
input (str): The search query string.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
str: A formatted string containing up to 5 web search results.
|
230 |
+
"""
|
231 |
+
search_docs = TavilySearchResults(max_results=5).invoke(input)
|
232 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
233 |
+
[
|
234 |
+
(
|
235 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
236 |
+
if hasattr(doc, "metadata") and hasattr(doc, "page_content")
|
237 |
+
else
|
238 |
+
f'<Document source="{doc.get("source", "")}" page="{doc.get("page", "")}"/>\n{doc.get("content", doc.get("page_content", ""))}\n</Document>'
|
239 |
+
)
|
240 |
+
for doc in search_docs
|
241 |
+
]
|
242 |
+
)
|
243 |
+
return {"web_results": formatted_search_docs}
|
244 |
+
|
245 |
+
@tool
|
246 |
+
def arvix_search(input: str) -> str:
|
247 |
+
"""
|
248 |
+
Search Arxiv for a query and return up to 3 results.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
input (str): The search query string.
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
str: A formatted string containing up to 3 Arxiv search results.
|
255 |
+
"""
|
256 |
+
search_docs = ArxivLoader(query=input, load_max_docs=3).load()
|
257 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
258 |
+
[
|
259 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
260 |
+
for doc in search_docs
|
261 |
+
])
|
262 |
+
return {"arvix_results": formatted_search_docs}
|
263 |
+
|
264 |
+
# load the system prompt from the file
|
265 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
266 |
+
system_prompt = f.read()
|
267 |
+
|
268 |
+
# System message
|
269 |
+
sys_msg = SystemMessage(content=system_prompt)
|
270 |
+
|
271 |
+
# build a retriever
|
272 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
273 |
+
#embeddings = GoogleGenerativeAIEmbeddings(model="models/gemini-embedding-exp-03-07")
|
274 |
+
supabase: Client = create_client(
|
275 |
+
os.environ.get("SUPABASE_URL"),
|
276 |
+
os.environ.get("SUPABASE_SERVICE_KEY"))
|
277 |
+
vector_store = SupabaseVectorStore(
|
278 |
+
client=supabase,
|
279 |
+
embedding= embeddings,
|
280 |
+
table_name="documents",
|
281 |
+
query_name="match_documents_langchain",
|
282 |
+
)
|
283 |
+
create_retriever_tool = create_retriever_tool(
|
284 |
+
retriever=vector_store.as_retriever(),
|
285 |
+
name="Question Search",
|
286 |
+
description="A tool to retrieve similar questions from a vector store.",
|
287 |
+
)
|
288 |
+
|
289 |
+
tools = [
|
290 |
+
multiply,
|
291 |
+
add,
|
292 |
+
subtract,
|
293 |
+
divide,
|
294 |
+
modulus,
|
295 |
+
power,
|
296 |
+
square_root,
|
297 |
+
wiki_search,
|
298 |
+
web_search,
|
299 |
+
arvix_search,
|
300 |
+
save_and_read_file,
|
301 |
+
analyze_csv_file,
|
302 |
+
analyze_excel_file,
|
303 |
+
# create_retriever_tool
|
304 |
+
]
|
305 |
+
|
306 |
+
# Build graph function
|
307 |
+
def build_graph(provider: str = "groq"):
|
308 |
+
"""Build the graph"""
|
309 |
+
# Load environment variables from .env file
|
310 |
+
if provider == "google":
|
311 |
+
# Google Gemini
|
312 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
313 |
+
elif provider == "groq":
|
314 |
+
# Groq https://console.groq.com/docs/models
|
315 |
+
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
316 |
+
elif provider == "huggingface":
|
317 |
+
# TODO: Add huggingface endpoint
|
318 |
+
llm = ChatHuggingFace(
|
319 |
+
llm=HuggingFaceEndpoint(
|
320 |
+
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
321 |
+
temperature=0,
|
322 |
+
),
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
326 |
+
# Bind tools to LLM
|
327 |
+
llm_with_tools = llm.bind_tools(tools)
|
328 |
+
|
329 |
+
# Node
|
330 |
+
def assistant(state: MessagesState):
|
331 |
+
"""Assistant node"""
|
332 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
333 |
+
|
334 |
+
def retriever(state: MessagesState):
|
335 |
+
"""Retriever node"""
|
336 |
+
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
337 |
+
# similar_question = "What is the surname of the equine veterinarian mentioned in 1.E Exercises from the chemistry materials licensed by Marisa Alviar-Agnew & Henry Agnew under the CK-12 license in LibreText's Introductory Chemistry materials as compiled 08/21/2023?"
|
338 |
+
if similar_question:
|
339 |
+
example_msg = HumanMessage(
|
340 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
341 |
+
)
|
342 |
+
else:
|
343 |
+
example_msg = HumanMessage(
|
344 |
+
content="No similar questions found in the database.",
|
345 |
+
)
|
346 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
347 |
+
|
348 |
+
builder = StateGraph(MessagesState)
|
349 |
+
builder.add_node("retriever", retriever)
|
350 |
+
builder.add_node("assistant", assistant)
|
351 |
+
builder.add_node("tools", ToolNode(tools))
|
352 |
+
builder.add_edge(START, "retriever")
|
353 |
+
builder.add_edge("retriever", "assistant")
|
354 |
+
builder.add_conditional_edges(
|
355 |
+
"assistant",
|
356 |
+
tools_condition,
|
357 |
+
)
|
358 |
+
builder.add_edge("tools", "assistant")
|
359 |
+
|
360 |
+
# Compile graph
|
361 |
+
return builder.compile()
|
362 |
+
|
363 |
+
# test
|
364 |
+
if __name__ == "__main__":
|
365 |
+
#question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
366 |
+
question = "What is the surname of the equine veterinarian mentioned in 1.E Exercises from the chemistry materials licensed by Marisa Alviar-Agnew & Henry Agnew under the CK-12 license in LibreText's Introductory Chemistry materials as compiled 08/21/2023?"
|
367 |
+
# Build the graph
|
368 |
+
graph = build_graph(provider="google")
|
369 |
+
# Run the graph
|
370 |
+
messages = [HumanMessage(content=question)]
|
371 |
+
messages = graph.invoke({"messages": messages})
|
372 |
+
for m in messages["messages"]:
|
373 |
+
m.pretty_print()
|