""" TextLens - AI-Powered OCR Application Main entry point for the application. """ import gradio as gr import torch import time import logging from threading import Thread from PIL import Image from transformers import ( AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer, Qwen2VLForConditionalGeneration, ) from transformers import Qwen2_5_VLForConditionalGeneration # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Model configurations QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" ROLMOCR_MODEL_ID = "reducto/RolmOCR" def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str: """Returns an HTML snippet for a thin animated progress bar with a label.""" return f'''
{label}
''' # Load models at startup logger.info("šŸš€ Loading OCR models...") logger.info("This may take a few minutes on first run...") try: # Load Qwen2VL OCR model (primary fast model) logger.info(f"Loading Qwen2VL OCR model: {QV_MODEL_ID}") qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True) qwen_model = Qwen2VLForConditionalGeneration.from_pretrained( QV_MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16 ).to("cuda" if torch.cuda.is_available() else "cpu").eval() logger.info("āœ… Qwen2VL OCR model loaded successfully!") # Load RolmOCR model (specialized document model) logger.info(f"Loading RolmOCR model: {ROLMOCR_MODEL_ID}") rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True) rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained( ROLMOCR_MODEL_ID, trust_remote_code=True, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32 ).to("cuda" if torch.cuda.is_available() else "cpu").eval() logger.info("āœ… RolmOCR model loaded successfully!") MODELS_LOADED = True logger.info("šŸŽ‰ All models loaded and ready!") except Exception as e: logger.error(f"āŒ Failed to load models: {str(e)}") MODELS_LOADED = False def extract_text_from_image(image, text_query, use_rolmocr=False): """Extract text from image using selected OCR model with streaming response.""" if not MODELS_LOADED: yield "āŒ Error: OCR models failed to load. Please check your setup and try again." return if image is None: yield "āŒ No image provided. Please upload an image to extract text." return try: # Ensure image is in RGB format if not isinstance(image, Image.Image): yield "āŒ Invalid image format. Please upload a valid image file." return if image.mode != 'RGB': image = image.convert('RGB') # Prepare text query if not text_query.strip(): text_query = "Extract all text from this image" # Select model and processor if use_rolmocr: processor = rolmocr_processor model = rolmocr_model model_name = "RolmOCR" logger.info("Using RolmOCR for specialized document processing") else: processor = qwen_processor model = qwen_model model_name = "Qwen2VL OCR" logger.info("Using Qwen2VL OCR for fast text extraction") # Build messages for the model messages = [ { "role": "user", "content": [ {"type": "text", "text": text_query}, {"type": "image", "image": image} ] } ] # Apply chat template and prepare inputs prompt_full = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = processor( text=[prompt_full], images=[image], return_tensors="pt", padding=True, ).to("cuda" if torch.cuda.is_available() else "cpu") # Set up streaming streamer = TextIteratorStreamer( processor, skip_prompt=True, skip_special_tokens=True ) generation_kwargs = dict( inputs, streamer=streamer, max_new_tokens=1024, do_sample=False, temperature=0.1 ) # Start generation in separate thread thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # Yield progress bar first yield progress_bar_html(f"šŸ” Processing with {model_name}") # Stream the response buffer = "" for new_text in streamer: buffer += new_text # Clean up any special tokens that might leak through clean_buffer = buffer.replace("<|im_end|>", "").replace("<|endoftext|>", "").strip() if clean_buffer: time.sleep(0.01) # Small delay for smooth streaming yield clean_buffer # Ensure thread completes thread.join() # Final clean response final_response = buffer.replace("<|im_end|>", "").replace("<|endoftext|>", "").strip() if not final_response: yield "āš ļø No text was detected in the image. Please try with a clearer image or different model." else: logger.info(f"āœ… Successfully extracted text: {len(final_response)} characters") yield final_response except Exception as e: error_msg = f"āŒ Error processing image: {str(e)}" logger.error(f"OCR processing failed: {str(e)}") yield error_msg def get_model_status(): """Get current model status information.""" if MODELS_LOADED: device = "🟢 GPU (CUDA)" if torch.cuda.is_available() else "🟔 CPU" return f""" **šŸ¤– Model Status: āœ… Ready** **Primary Model:** Qwen2VL-OCR-2B (Fast general OCR) **Secondary Model:** RolmOCR (Specialized documents) **Device:** {device} **Memory:** Optimized for streaming inference ✨ Both models loaded and ready for OCR processing! """ else: return """ **šŸ¤– Model Status: āŒ Failed to Load** Please check your internet connection and GPU setup. Models need to be downloaded on first run. """ # Create Gradio Interface def create_interface(): """Create the streamlined OCR interface.""" with gr.Blocks( title="TextLens - Fast AI OCR", theme=gr.themes.Soft(), css=""" .container { max-width: 1200px; margin: auto; } .header { text-align: center; padding: 20px; } .model-status { background: #f0f0f0; padding: 15px; border-radius: 8px; margin: 10px 0; } """ ) as interface: # Header gr.HTML("""

šŸ” TextLens - AI-Powered OCR

Fast and accurate text extraction using modern AI models

""") # Model Status with gr.Row(): with gr.Column(): status_display = gr.Markdown( value=get_model_status(), elem_classes=["model-status"] ) refresh_btn = gr.Button("šŸ”„ Refresh Status", size="sm") # Main Interface with gr.Row(): with gr.Column(scale=1): gr.Markdown("### šŸ“ Upload Image") image_input = gr.Image( label="Upload image for OCR", type="pil", sources=["upload", "clipboard"] ) text_query = gr.Textbox( label="šŸ“ OCR Instructions (optional)", placeholder="Extract all text from this image", value="Extract all text from this image", lines=2 ) use_rolmocr = gr.Checkbox( label="šŸŽÆ Use RolmOCR (specialized for documents)", value=False, info="Check for complex documents/tables, uncheck for general text" ) extract_btn = gr.Button( "šŸš€ Extract Text", variant="primary", size="lg" ) with gr.Column(scale=1): gr.Markdown("### šŸ“„ Extracted Text") text_output = gr.Textbox( label="OCR Results", lines=15, max_lines=25, placeholder="Extracted text will appear here...\n\n• Upload an image to get started\n• Choose between fast OCR or specialized document processing\n• Results will stream in real-time", show_copy_button=True ) # Event handlers extract_btn.click( fn=extract_text_from_image, inputs=[image_input, text_query, use_rolmocr], outputs=text_output, show_progress="hidden" # We handle progress with custom HTML ) # Auto-extract on image upload image_input.upload( fn=extract_text_from_image, inputs=[image_input, text_query, use_rolmocr], outputs=text_output, show_progress="hidden" ) refresh_btn.click( fn=get_model_status, outputs=status_display ) return interface if __name__ == "__main__": logger.info("šŸš€ Starting TextLens OCR application...") try: interface = create_interface() # Launch configuration interface.launch( share=False, server_name="0.0.0.0", server_port=7860, show_error=True, debug=False ) except Exception as e: logger.error(f"Failed to start application: {str(e)}") raise