import gradio as gr import torch import numpy as np import torch.nn.functional as F from transformers import AutoTokenizer from torchvision import transforms from models import MAGVITv2, get_mask_schedule, MMadaModelLM from training.prompting_utils import UniversalPrompting from PIL import Image import spaces def image_transform(image, resolution=256, normalize=True): image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image) image = transforms.CenterCrop((resolution, resolution))(image) image = transforms.ToTensor()(image) if normalize: image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image) return image def add_gumbel_noise(logits, temperature): """ Adds Gumbel noise to logits for stochastic sampling. Equivalent to argmax(logits + temperature * G) where G ~ Gumbel(0,1). This version is more numerically stable than a version involving exp() and division. """ if abs(temperature) < 1e-9: # Effectively zero temperature return logits # Ensure logits are float64 for precision with noise, as suggested by user context logits = logits.to(torch.float64) # Standard Gumbel noise: -log(-log(U)), U ~ Uniform(0,1) # Add small epsilon for numerical stability inside logs noise = torch.rand_like(logits, dtype=torch.float64) standard_gumbel_noise = -torch.log(-torch.log(noise + 1e-20) + 1e-20) return logits + temperature * standard_gumbel_noise def get_num_transfer_tokens(mask_index, steps): mask_num = mask_index.sum(dim=1, keepdim=True) # Ensure steps is at least 1 to avoid division by zero if mask_num is also 0 (though sum should be >=0) steps = max(1, int(steps)) # Ensure steps is a positive integer base = mask_num // steps remainder = mask_num % steps num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.long) + base for i in range(mask_num.size(0)): # Iterate over batch if remainder[i] > 0 : # Ensure remainder is positive before indexing num_transfer_tokens[i, :remainder[i].item()] += 1 # .item() for single value tensor to int return num_transfer_tokens DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' DEFAULT_MODEL_PATH = "Gen-Verse/MMaDA-8B-MixCoT" # Default MASK_ID = 126336 MODEL = MMadaModelLM.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True, torch_dtype=torch.bfloat16).to(DEVICE).eval() TOKENIZER = AutoTokenizer.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True) uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True) VQ_MODEL = MAGVITv2().from_pretrained("showlab/magvitv2").to(DEVICE) CURRENT_MODEL_PATH = None MODEL_CHOICES = [ "MMaDA-8B-Base", "MMaDA-8B-MixCoT (coming soon)", "MMaDA-8B-Max (coming soon)" ] MODEL_ACTUAL_PATHS = { "MMaDA-8B-Base": DEFAULT_MODEL_PATH, } def clear_outputs_action(): return None, None @spaces.GPU def _load_model_and_tokenizer_core(model_path_to_load, model_display_name_for_status): global MODEL, TOKENIZER, MASK_ID, CURRENT_MODEL_PATH, DEVICE, uni_prompting if MODEL is not None and CURRENT_MODEL_PATH == model_path_to_load: return f"Model '{model_display_name_for_status}' from '{model_path_to_load}' is already loaded. MASK_ID: {MASK_ID}" CURRENT_MODEL_PATH = model_path_to_load status_msg_parts = [f"Loading '{model_display_name_for_status}'..."] # try: TOKENIZER = AutoTokenizer.from_pretrained(model_path_to_load, trust_remote_code=True) status_msg_parts.append(f"Tokenizer for '{model_display_name_for_status}' loaded.") MODEL = MMadaModelLM.from_pretrained(model_path_to_load, trust_remote_code=True, torch_dtype=torch.bfloat16).to(DEVICE).eval() status_msg_parts.append(f"Model '{model_display_name_for_status}' loaded to {DEVICE}.") uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True) if hasattr(TOKENIZER, 'mask_token_id') and TOKENIZER.mask_token_id is not None: MASK_ID = TOKENIZER.mask_token_id status_msg_parts.append(f"Using MASK_ID from tokenizer: {MASK_ID}.") else: MASK_ID = 126336 status_msg_parts.append(f"Using default MASK_ID: {MASK_ID}.") if TOKENIZER.pad_token_id is None: if TOKENIZER.eos_token_id is not None: TOKENIZER.pad_token_id = TOKENIZER.eos_token_id TOKENIZER.pad_token = TOKENIZER.eos_token status_msg_parts.append(f"Set pad_token_id to eos_token_id ({TOKENIZER.eos_token_id}).") else: status_msg_parts.append("Warning: pad_token_id is None and no eos_token_id.") if TOKENIZER.eos_token_id is None: # Important for cleaning up output in visualization status_msg_parts.append("Warning: tokenizer.eos_token_id is None. EOS cleanup might not work.") TOKENIZER.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n' }}" return " ".join(status_msg_parts) # except Exception as e: # MODEL = None # TOKENIZER = None # MASK_ID = None # CURRENT_MODEL_PATH = None # return f"Error loading model '{model_display_name_for_status}': {str(e)}" def handle_model_selection_change(selected_model_name_ui): if "coming soon" in selected_model_name_ui.lower(): global MODEL, TOKENIZER, MASK_ID, CURRENT_MODEL_PATH MODEL = None TOKENIZER = None MASK_ID = None CURRENT_MODEL_PATH = None return f"'{selected_model_name_ui}' is not yet available. Please select 'Model A'." actual_path = MODEL_ACTUAL_PATHS.get(selected_model_name_ui) if not actual_path: return f"Path for '{selected_model_name_ui}' is not defined. Cannot load." return _load_model_and_tokenizer_core(actual_path, selected_model_name_ui) def get_highlighted_text_tuples(current_x_ids_batch, prompt_input_ids, prompt_len, tk, current_mask_id, raw_prompt_attention_mask): if current_x_ids_batch is None or current_x_ids_batch.ndim == 0 or current_x_ids_batch.shape[0] == 0: return [("Error in sequence data for visualization.", "ERROR")] # only answer part current_x_ids_batch = current_x_ids_batch[:, prompt_len:] seq_ids = current_x_ids_batch[0].tolist() eos_token_id = tk.eos_token_id # Get EOS token ID # Stage 1: Build initial list of tuples with (token_str, label, token_id_int) # This helps in identifying EOS tokens later without re-checking the type. intermediate_tuples = [] for j, token_id_int in enumerate(seq_ids): try: token_str = tk.decode([token_id_int], skip_special_tokens=True, clean_up_tokenization_spaces=False) except Exception: # Handle cases where a token ID might be problematic (e.g. with mock) token_str = f"[ID:{token_id_int}]" label = "ERROR" if token_id_int == current_mask_id: token_str = "[MASK]" label = "MASK" else: label = "GEN" intermediate_tuples.append((token_str, label, token_id_int)) return intermediate_tuples @torch.no_grad() @spaces.GPU def generate_viz_wrapper_t2i(prompt_text, steps, guidance_scale, mask_schedule="cosine"): global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting if MODEL is None or TOKENIZER is None or MASK_ID is None: yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded." return steps = int(steps) guidance_scale = float(guidance_scale) image_tokens = torch.ones((1, 1024), dtype=torch.long, device=DEVICE) * MASK_ID prompt_text = [prompt_text] input_ids, attention_mask = uni_prompting((prompt_text, image_tokens), 't2i_gen') if guidance_scale > 0: uncond_input_ids, uncond_attention_mask = uni_prompting(([''], image_tokens), 't2i_gen') else: uncond_input_ids, uncond_attention_mask = None, None mask_schedule = get_mask_schedule(mask_schedule) blank_image = Image.new("RGB", (512, 512), (255, 255, 255)) yield blank_image, "Starting generation..." for image_step, status_msg_step in MODEL.t2i_generate_decoding_stepwise( input_ids = input_ids, uncond_input_ids = uncond_input_ids, attention_mask = attention_mask, uncond_attention_mask = uncond_attention_mask, temperature=1.0, timesteps = steps, guidance_scale = guidance_scale, noise_schedule = mask_schedule, noise_type = "mask", seq_len = 1024, vq_model = VQ_MODEL, uni_prompting=uni_prompting): yield image_step, status_msg_step @torch.no_grad() @spaces.GPU def generate_viz_wrapper_lm(prompt_text, steps, gen_length, block_length, temperature, cfg_scale, remasking_strategy, thinking_mode_lm=False): global MODEL, TOKENIZER, MASK_ID, DEVICE if MODEL is None or TOKENIZER is None or MASK_ID is None: yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded." return steps = int(steps) gen_length = int(gen_length) block_length = int(block_length) if thinking_mode_lm: prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text try: m = [{"role": "user", "content": prompt_text}] processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False) except Exception as e: yield [("Error applying chat template.", "ERROR")], f"Chat template error: {e}" processed_prompt_text = prompt_text try: if TOKENIZER.pad_token_id is None: if TOKENIZER.eos_token_id is not None: TOKENIZER.pad_token_id = TOKENIZER.eos_token_id else: # Should have been caught by load_model, but double check yield [("Tokenizer Error", "ERROR")], "pad_token_id is not set in tokenizer." return input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=MODEL.config.max_position_embeddings if hasattr(MODEL.config, 'max_position_embeddings') else 2048)['input_ids'].to(DEVICE) raw_prompt_attention_mask = None except Exception as e: yield [("Error tokenizing prompt.", "ERROR")], f"Tokenization error: {e}" return batch_size = input_ids.shape[0] prompt_len = input_ids.shape[1] x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE) x[:, :prompt_len] = input_ids.clone() yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation: Prompt + Initial Masks" if gen_length == 0: final_text_output = TOKENIZER.batch_decode(x[:,prompt_len:], skip_special_tokens=True) yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] if final_text_output else "" return if block_length <= 0 or gen_length % block_length != 0 : yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \ f"Error: gen_length ({gen_length}) must be divisible by block_length ({block_length}) and block_length > 0." return num_blocks = gen_length // block_length if steps <=0 or steps % num_blocks != 0: yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \ f"Error: steps ({steps}) must be positive and divisible by num_blocks ({num_blocks}). Steps: {steps}, Num Blocks: {num_blocks}" return steps_per_block = steps // num_blocks for num_block_iter in range(num_blocks): current_block_start_idx_in_x = prompt_len + num_block_iter * block_length current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool) block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = \ (x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID) num_transfer_tokens_for_this_block = get_num_transfer_tokens( block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x], steps_per_block ) for i_step_in_block in range(steps_per_block): mask_index_global = (x == MASK_ID) if cfg_scale > 0.: un_x = x.clone() # For unconditional pass, mask out the original prompt tokens that are not padding # raw_prompt_attention_mask is (B, prompt_len) prompt_active_tokens_mask = raw_prompt_attention_mask.bool() # True where actual prompt tokens are un_x[:, :prompt_len][prompt_active_tokens_mask] = MASK_ID x_cfg_input = torch.cat([x, un_x], dim=0) # Pass attention_mask for CFG if model expects it, covering both parts # For simplicity, not passing explicit attention_mask here; relies on model's internal handling. model_output = MODEL(x_cfg_input) logits_cond, logits_uncond = torch.chunk(model_output.logits, 2, dim=0) logits = logits_uncond + (cfg_scale + 1) * (logits_cond - logits_uncond) else: # Not passing explicit attention_mask here; relies on model's internal handling. model_output = MODEL(x) logits = model_output.logits logits_with_noise = add_gumbel_noise(logits, temperature=temperature) x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1) if remasking_strategy == 'low_confidence': probs = F.softmax(logits.to(torch.float64), dim=-1) x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1) elif remasking_strategy == 'random': x0_probs = torch.rand(x.shape, device=x.device, dtype=torch.float64) else: yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), f"Error: Unknown remasking strategy '{remasking_strategy}'" return confidence_for_selection = torch.full_like(x0_probs, -torch.inf) candidate_positions_for_unmasking = mask_index_global & block_masks_bool_current confidence_for_selection = torch.where( candidate_positions_for_unmasking, x0_probs, -torch.inf ) x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x) transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool) num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block] for j_batch_idx in range(batch_size): k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), candidate_positions_for_unmasking[j_batch_idx].sum().item()) # ensure k isn't too large if k_val > 0: # Ensure confidence_for_selection[j_batch_idx] is 1D for topk conf_slice = confidence_for_selection[j_batch_idx] if conf_slice.ndim > 1: conf_slice = conf_slice.view(-1) # Should already be 1D from x0_probs # Check if there are enough valid (non -inf) confidences valid_conf_count = (conf_slice > -torch.inf).sum().item() actual_k = min(k_val, valid_conf_count) if actual_k > 0: _, topk_indices_in_x = torch.topk(conf_slice, k=actual_k) transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool] current_total_step = num_block_iter * steps_per_block + i_step_in_block + 1 total_overall_steps = num_blocks * steps_per_block status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block} (Total: {current_total_step}/{total_overall_steps})" yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg final_generated_ids = x[:, prompt_len:] final_text_output = TOKENIZER.batch_decode(final_generated_ids, skip_special_tokens=True) final_text_str = final_text_output[0] if final_text_output and len(final_text_output) > 0 else "" yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_str @torch.no_grad() @spaces.GPU def generate_viz_wrapper(uploaded_image_pil, prompt_text, steps, gen_length, block_length, temperature, cfg_scale, remasking_strategy, thinking_mode_mmu=False): global MODEL, TOKENIZER, MASK_ID, DEVICE if MODEL is None or TOKENIZER is None or MASK_ID is None: yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded." return steps = int(steps) gen_length = int(gen_length) block_length = int(block_length) if thinking_mode_mmu: prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text try: m = [{"role": "user", "content": prompt_text}] processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False) except Exception as e: yield [("Error applying chat template.", "ERROR")], f"Chat template error: {e}" processed_prompt_text = prompt_text image_vq_ids_tensor = None if uploaded_image_pil is not None: try: image = image_transform(uploaded_image_pil, resolution=512).to(DEVICE) image = image.unsqueeze(0) image_vq_ids_tensor = VQ_MODEL.get_code(image) + 126349 except Exception as e: yield [("Error processing image.", "ERROR")], f"Image to VQ tokens conversion failed: {str(e)}" return try: if TOKENIZER.pad_token_id is None: if TOKENIZER.eos_token_id is not None: TOKENIZER.pad_token_id = TOKENIZER.eos_token_id else: yield [("Tokenizer Error", "ERROR")], "pad_token_id is not set in tokenizer." return input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=MODEL.config.max_position_embeddings if hasattr(MODEL.config, 'max_position_embeddings') else 2048)['input_ids'].to(DEVICE) raw_prompt_attention_mask = None if image_vq_ids_tensor is not None: if image_vq_ids_tensor.ndim == 1: image_vq_ids_tensor = image_vq_ids_tensor.unsqueeze(0) input_ids = torch.cat([ (torch.ones(input_ids.shape[0], 1) * torch.tensor([126089])).to(DEVICE), (torch.ones(input_ids.shape[0], 1) * torch.tensor([126084])).to(DEVICE), image_vq_ids_tensor, (torch.ones(input_ids.shape[0], 1) * torch.tensor([126085])).to(DEVICE), input_ids ], dim=1).long() else: input_ids = input_ids except Exception as e: yield [("Error tokenizing prompt.", "ERROR")], f"Tokenization error: {e}" return batch_size = input_ids.shape[0] prompt_len = input_ids.shape[1] x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE) x[:, :prompt_len] = input_ids.clone() yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation: Prompt + Initial Masks" if gen_length == 0: final_text_output = TOKENIZER.batch_decode(x[:,prompt_len:], skip_special_tokens=True) yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] if final_text_output else "" return if block_length <= 0 or gen_length % block_length != 0 : yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \ f"Error: gen_length ({gen_length}) must be divisible by block_length ({block_length}) and block_length > 0." return num_blocks = gen_length // block_length if steps <=0 or steps % num_blocks != 0: yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \ f"Error: steps ({steps}) must be positive and divisible by num_blocks ({num_blocks}). Steps: {steps}, Num Blocks: {num_blocks}" return steps_per_block = steps // num_blocks for num_block_iter in range(num_blocks): current_block_start_idx_in_x = prompt_len + num_block_iter * block_length current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool) block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = \ (x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID) num_transfer_tokens_for_this_block = get_num_transfer_tokens( block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x], steps_per_block ) for i_step_in_block in range(steps_per_block): mask_index_global = (x == MASK_ID) if cfg_scale > 0.: un_x = x.clone() # For unconditional pass, mask out the original prompt tokens that are not padding # raw_prompt_attention_mask is (B, prompt_len) prompt_active_tokens_mask = raw_prompt_attention_mask.bool() # True where actual prompt tokens are un_x[:, :prompt_len][prompt_active_tokens_mask] = MASK_ID x_cfg_input = torch.cat([x, un_x], dim=0) # Pass attention_mask for CFG if model expects it, covering both parts # For simplicity, not passing explicit attention_mask here; relies on model's internal handling. model_output = MODEL(x_cfg_input) logits_cond, logits_uncond = torch.chunk(model_output.logits, 2, dim=0) logits = logits_uncond + (cfg_scale + 1) * (logits_cond - logits_uncond) else: # Not passing explicit attention_mask here; relies on model's internal handling. model_output = MODEL(x) logits = model_output.logits logits_with_noise = add_gumbel_noise(logits, temperature=temperature) x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1) if remasking_strategy == 'low_confidence': probs = F.softmax(logits.to(torch.float64), dim=-1) x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1) elif remasking_strategy == 'random': x0_probs = torch.rand(x.shape, device=x.device, dtype=torch.float64) else: yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), f"Error: Unknown remasking strategy '{remasking_strategy}'" return confidence_for_selection = torch.full_like(x0_probs, -torch.inf) candidate_positions_for_unmasking = mask_index_global & block_masks_bool_current confidence_for_selection = torch.where( candidate_positions_for_unmasking, x0_probs, -torch.inf ) x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x) transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool) num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block] for j_batch_idx in range(batch_size): k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), candidate_positions_for_unmasking[j_batch_idx].sum().item()) # ensure k isn't too large if k_val > 0: # Ensure confidence_for_selection[j_batch_idx] is 1D for topk conf_slice = confidence_for_selection[j_batch_idx] if conf_slice.ndim > 1: conf_slice = conf_slice.view(-1) # Should already be 1D from x0_probs # Check if there are enough valid (non -inf) confidences valid_conf_count = (conf_slice > -torch.inf).sum().item() actual_k = min(k_val, valid_conf_count) if actual_k > 0: _, topk_indices_in_x = torch.topk(conf_slice, k=actual_k) transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool] current_total_step = num_block_iter * steps_per_block + i_step_in_block + 1 total_overall_steps = num_blocks * steps_per_block status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block} (Total: {current_total_step}/{total_overall_steps})" yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg final_generated_ids = x[:, prompt_len:] final_text_output = TOKENIZER.batch_decode(final_generated_ids, skip_special_tokens=True) final_text_str = final_text_output[0] if final_text_output and len(final_text_output) > 0 else "" yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_str css_styles = """ .gradio-container{font-family:'IBM Plex Sans',sans-serif;margin:auto;} .gr-input {background:#f9f9f9 !important;border:1px solid #e0e0e0 !important;} .gr-output{background:#f0f0f0 !important;border:1px solid #d0d0d0 !important;} .highlighted-text span{ padding:2px 4px;border-radius:4px;margin:1px 2px;display:inline-block;line-height:1.6; } footer{display:none !important} #live-update-scrollable-box { max-height: 800px; /* 您可以根据需要调整这个最大高度,例如 '300px', '50vh' 等 */ overflow-y: auto !important; /* 当内容超出 max-height 时显示垂直滚动条 */ display: block; /* 确保元素是块级元素,以便 max-height 生效 */ } #think_btn { background-color: #f3f4f6 !important; border: 1px solid #d0d0d0 !important; color: #111827 !important; font-size: 16px !important; font-weight: bold !important; } #think_btn:hover { background-color: #e0e0e0 !important; border: 1px solid #c0c0c0 !important; color: #222 !important; } #think_btn:active { background-color: #2563eb !important; border: 1px solid #b0b0b0 !important; color: white !important; } """ # thinking_mode_t2i = gr.State(False) def toggle_thinking_mode_lm(current_thinking_mode): new_state = not current_thinking_mode new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌" return new_state, gr.update(value=new_label) def toggle_thinking_mode_mmu(current_thinking_mode): new_state = not current_thinking_mode new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌" return new_state, gr.update(value=new_label) color_map_config = { "MASK": "lightgrey", "GEN": "#DCABFA", } theme = gr.themes.Ocean( primary_hue="fuchsia", ) with gr.Blocks(css=css_styles, theme=theme) as demo: # with gr.Blocks(css=css_styles, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.sky)) as demo: # with gr.Blocks() as demo: thinking_mode_lm = gr.State(True) thinking_mode_mmu = gr.State(True) # gr.Markdown("<h1 style='text-align: center; margin-bottom: 20px;'>MMaDA: Multimodal Large Diffusion Language Models</h1>") # gr.Markdown("MMaDA is a novel class of multimodal diffusion foundation models designed to achieve superior performance across diverse domains such as textual reasoning, multimodal understanding, and text-to-image generation") # gr.Markdown("Github: [Gen-Verse/MMaDA](https://github.com/Gen-Verse/MMaDA)") # gr.Markdown("Paper: [MMaDA: Multimodal Large Diffusion Language Models]()") gr.HTML(""" <div align="center" style="margin-bottom: 20px;"> <img src='/gradio_api/file=title.png' width="160"> <p style="font-size: 16px; max-width: 800px; margin: 5px auto;"> MMaDA is a new class of multimodal diffusion foundation models, enabling state-of-the-art performance in reasoning, multimodal understanding, and text-to-image generation. </p> <p style="font-size: 15px;"> 📄 <a href="https://arxiv.org/abs/2505.15809" target="_blank">Paper</a> | 💻 <a href="https://github.com/Gen-Verse/MMaDA" target="_blank">Code</a> </p> </div> """) with gr.Row(): gr.HTML(""" <div style="display: flex; justify-content: center; align-items: center; padding: 15px;"> <span style="padding: 8px 15px; border-radius: 15px; font-weight: bold; margin: 0 10px; background-color: #E879F9; color: white;"> MMaDA-8B-MixCoT (Active) </span> <span style="padding: 8px 15px; border-radius: 15px; font-weight: bold; margin: 0 10px; background-color: #E5E7EB; color: #6B7280; cursor: not-allowed;"> MMaDA-8B-Max (coming soon) </span> </div> """) gr.Markdown("## Part 1. Text Generation") with gr.Row(): with gr.Column(scale=2): prompt_input_box_lm = gr.Textbox(label="Enter your prompt:", lines=3, value="A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?") think_button_lm = gr.Button("Thinking Mode ✅", elem_id="think_btn") with gr.Accordion("Generation Parameters", open=True): with gr.Row(): gen_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=512, step=64, label="Generation Length", info="Number of tokens to generate.") steps_slider_lm = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).") with gr.Row(): block_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=128, step=32, label="Block Length", info="gen_length must be divisible by this.") remasking_dropdown_lm = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy") with gr.Row(): cfg_scale_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale", info="Classifier-Free Guidance. 0 disables it.") temperature_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature", info="Controls randomness via Gumbel noise. 0 is deterministic.") with gr.Row(): run_button_ui_lm = gr.Button("Generate Sequence", variant="primary", scale=3) clear_button_ui_lm = gr.Button("Clear Outputs", scale=1) with gr.Column(scale=3): # gr.Markdown("## Live Generation Process") output_visualization_box_lm = gr.HighlightedText( label="Live Generation Process", show_legend=True, color_map=color_map_config, combine_adjacent=False, interactive=False, elem_id="live-update-scrollable-box", ) # gr.Markdown("## Final Generated Text") output_final_text_box_lm = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True) gr.Examples( examples=[ ["A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?", 256, 512, 128, 1, 0, "low_confidence"], ["Lily can run 12 kilometers per hour for 4 hours. After that, she can run 6 kilometers per hour. How many kilometers can she run in 8 hours?", 256, 512, 64, 1, 0, "low_confidence"] ], inputs=[prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm], outputs=[output_visualization_box_lm, output_final_text_box_lm], fn=generate_viz_wrapper_lm, cache_examples=False ) gr.Markdown("---") gr.Markdown("## Part 2. Multimodal Understanding") with gr.Row(): with gr.Column(scale=2): prompt_input_box_mmu = gr.Textbox( label="Enter your prompt:", lines=3, value="Please describe this image in detail." ) think_button_mmu = gr.Button("Thinking Mode ✅", elem_id="think_btn") with gr.Accordion("Generation Parameters", open=True): with gr.Row(): gen_length_slider_mmu = gr.Slider(minimum=64, maximum=1024, value=512, step=64, label="Generation Length", info="Number of tokens to generate.") steps_slider_mmu = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).") with gr.Row(): block_length_slider_mmu = gr.Slider(minimum=32, maximum=1024, value=128, step=32, label="Block Length", info="gen_length must be divisible by this.") remasking_dropdown_mmu = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy") with gr.Row(): cfg_scale_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale", info="Classifier-Free Guidance. 0 disables it.") temperature_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature", info="Controls randomness via Gumbel noise. 0 is deterministic.") with gr.Row(): image_upload_box = gr.Image(type="pil", label="Upload Image") with gr.Row(): run_button_ui_mmu = gr.Button("Generate Description", variant="primary", scale=3) clear_button_ui_mmu = gr.Button("Clear Outputs", scale=1) with gr.Column(scale=3): gr.Markdown("## Live Generation Process") output_visualization_box_mmu = gr.HighlightedText( label="Token Sequence (Live Update)", show_legend=True, color_map=color_map_config, combine_adjacent=False, interactive=False, elem_id="live-update-scrollable-box", ) gr.Markdown("## Final Generated Text") output_final_text_box_mmu = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True) gr.Examples( examples=[ ["figs/geo.png", "In the given figure, a square ABCD is inscribed in a circle with center O. Point P is located on side CD. What is the value of angle APB?", 256, 512, 64, 1, 0, "low_confidence"], ["figs/bus.jpg", "What are the colors of the bus?", 256, 512, 64, 1, 0, "low_confidence"] ], inputs=[ image_upload_box, prompt_input_box_mmu, steps_slider_mmu, gen_length_slider_mmu, block_length_slider_mmu, temperature_slider_mmu, cfg_scale_slider_mmu, remasking_dropdown_mmu ], outputs=[output_visualization_box_mmu, output_final_text_box_mmu], fn=generate_viz_wrapper, cache_examples=False ) gr.Markdown("---") gr.Markdown("## Part 3. Text-to-Image Generation") with gr.Row(): with gr.Column(scale=2): prompt_input_box_t2i = gr.Textbox(label="Enter your prompt:", lines=3, value="A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.") with gr.Accordion("Generation Parameters", open=True): with gr.Row(): steps_slider_t2i = gr.Slider(minimum=5, maximum=100, value=15, step=5, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).") guidance_scale_slider_t2i = gr.Slider(minimum=0.0, maximum=7.0, value=3.5, step=0.5, label="Guidance Scale", info="Classifier-Free Guidance. 0 disables it.") with gr.Row(): scheduler_radio_t2i = gr.Radio( choices=["cosine", "sigmoid", "linear"], value="cosine", label="Scheduler", ) with gr.Row(): run_button_ui_t2i = gr.Button("Generate Image", variant="primary", scale=3) clear_button_ui_t2i = gr.Button("Clear Outputs", scale=1) with gr.Column(scale=3): # gr.Markdown("## Live Generation Process") output_image_t2i = gr.Image(label="Generated Image", interactive=False, type="pil") output_status_t2i = gr.Textbox(label="Generation Status", interactive=False) gr.Examples( examples=[ ["A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.", 15, 3.5, "cosine"], ["A beautiful sunset over a calm ocean, with a few clouds in the sky.", 15, 3.5, "cosine"] ], inputs=[prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i], outputs=[output_image_t2i, output_status_t2i], fn=generate_viz_wrapper_t2i, cache_examples=False ) run_button_ui_t2i.click( fn=generate_viz_wrapper_t2i, inputs=[ prompt_input_box_t2i, steps_slider_t2i, guidance_scale_slider_t2i, scheduler_radio_t2i ], outputs=[output_image_t2i, output_status_t2i] ) clear_button_ui_t2i.click( fn=lambda: (None, ""), inputs=None, outputs=[output_image_t2i, output_status_t2i], queue=False ) think_button_lm.click( fn=toggle_thinking_mode_lm, inputs=[thinking_mode_lm], outputs=[thinking_mode_lm, think_button_lm] ) think_button_mmu.click( fn=toggle_thinking_mode_mmu, inputs=[thinking_mode_mmu], outputs=[thinking_mode_mmu, think_button_mmu] ) def initialize_default_model(): default_model = "MMaDA-8B-Base" result = handle_model_selection_change(default_model) return default_model, result def clear_outputs(): return None, None, None # Clear image, visualization, and final text clear_button_ui_lm.click( fn=clear_outputs, inputs=None, outputs=[image_upload_box, output_visualization_box_lm, output_final_text_box_lm], queue=False ) clear_button_ui_mmu.click( fn=clear_outputs, inputs=None, outputs=[image_upload_box, output_visualization_box_mmu, output_final_text_box_mmu], queue=False ) run_button_ui_lm.click( fn=generate_viz_wrapper_lm, inputs=[ prompt_input_box_lm, steps_slider_lm, gen_length_slider_lm, block_length_slider_lm, temperature_slider_lm, cfg_scale_slider_lm, remasking_dropdown_lm, thinking_mode_lm ], outputs=[output_visualization_box_lm, output_final_text_box_lm] ) run_button_ui_mmu.click( fn=generate_viz_wrapper, inputs=[ image_upload_box, prompt_input_box_mmu, steps_slider_mmu, gen_length_slider_mmu, block_length_slider_mmu, temperature_slider_mmu, cfg_scale_slider_mmu, remasking_dropdown_mmu, thinking_mode_mmu ], outputs=[output_visualization_box_mmu, output_final_text_box_mmu] ) if __name__ == "__main__": print(f"Starting Gradio App. Attempting to use device: {DEVICE}") demo.launch(allowed_paths=["title.png"])