Spaces:
Runtime error
Runtime error
Better isolation + various improvements (#133)
Browse files- better isolation, various improvements (69238fc734088ef8151d981d534809fddf742b7a)
- resolve conflict (db4c9bba61725d35b576116877b699b003c661df)
- .dockerignore +2 -1
- .gitignore +1 -0
- app.py +216 -169
.dockerignore
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
/downloads
|
| 2 |
-
/llama.cpp
|
|
|
|
|
|
| 1 |
/downloads
|
| 2 |
+
/llama.cpp
|
| 3 |
+
/outputs
|
.gitignore
CHANGED
|
@@ -164,3 +164,4 @@ cython_debug/
|
|
| 164 |
/downloads
|
| 165 |
!/downloads/.keep
|
| 166 |
/llama.cpp
|
|
|
|
|
|
| 164 |
/downloads
|
| 165 |
!/downloads/.keep
|
| 166 |
/llama.cpp
|
| 167 |
+
/outputs
|
app.py
CHANGED
|
@@ -12,21 +12,34 @@ from textwrap import dedent
|
|
| 12 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 13 |
|
| 14 |
|
|
|
|
| 15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
raise Exception(f"Model file not found: {model_path}")
|
| 27 |
|
| 28 |
print("Running imatrix command...")
|
| 29 |
-
process = subprocess.Popen(imatrix_command, shell=
|
| 30 |
|
| 31 |
try:
|
| 32 |
process.wait(timeout=60) # added wait
|
|
@@ -39,36 +52,54 @@ def generate_importance_matrix(model_path, train_data_path):
|
|
| 39 |
print("Imatrix proc still didn't term. Forecfully terming process...")
|
| 40 |
process.kill()
|
| 41 |
|
| 42 |
-
os.chdir("..")
|
| 43 |
-
|
| 44 |
print("Importance matrix generation completed.")
|
| 45 |
|
| 46 |
-
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
|
|
|
|
|
|
|
|
|
| 47 |
if oauth_token.token is None:
|
| 48 |
raise ValueError("You have to be logged in.")
|
| 49 |
|
| 50 |
-
split_cmd =
|
|
|
|
|
|
|
|
|
|
| 51 |
if split_max_size:
|
| 52 |
-
split_cmd
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
print(f"Split command: {split_cmd}")
|
| 56 |
|
| 57 |
-
result = subprocess.run(split_cmd, shell=
|
| 58 |
print(f"Split command stdout: {result.stdout}")
|
| 59 |
print(f"Split command stderr: {result.stderr}")
|
| 60 |
|
| 61 |
if result.returncode != 0:
|
| 62 |
-
|
|
|
|
| 63 |
print("Model split successfully!")
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
if sharded_model_files:
|
| 68 |
print(f"Sharded model files: {sharded_model_files}")
|
| 69 |
api = HfApi(token=oauth_token.token)
|
| 70 |
for file in sharded_model_files:
|
| 71 |
-
file_path = os.path.join(
|
| 72 |
print(f"Uploading file: {file_path}")
|
| 73 |
try:
|
| 74 |
api.upload_file(
|
|
@@ -87,7 +118,6 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
| 87 |
if oauth_token.token is None:
|
| 88 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
| 89 |
model_name = model_id.split('/')[-1]
|
| 90 |
-
fp16 = f"{model_name}.fp16.gguf"
|
| 91 |
|
| 92 |
try:
|
| 93 |
api = HfApi(token=oauth_token.token)
|
|
@@ -111,160 +141,177 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
| 111 |
if not os.path.exists("downloads"):
|
| 112 |
os.makedirs("downloads")
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
if result.returncode != 0:
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
print(f"
|
|
|
|
| 136 |
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
| 184 |
-
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
| 185 |
-
|
| 186 |
-
## Use with llama.cpp
|
| 187 |
-
Install llama.cpp through brew (works on Mac and Linux)
|
| 188 |
-
|
| 189 |
-
```bash
|
| 190 |
-
brew install llama.cpp
|
| 191 |
-
|
| 192 |
-
```
|
| 193 |
-
Invoke the llama.cpp server or the CLI.
|
| 194 |
-
|
| 195 |
-
### CLI:
|
| 196 |
-
```bash
|
| 197 |
-
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
| 198 |
-
```
|
| 199 |
-
|
| 200 |
-
### Server:
|
| 201 |
-
```bash
|
| 202 |
-
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
| 203 |
-
```
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
```
|
| 223 |
-
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
| 224 |
-
```
|
| 225 |
-
"""
|
| 226 |
-
)
|
| 227 |
-
card.save(f"README.md")
|
| 228 |
-
|
| 229 |
-
if split_model:
|
| 230 |
-
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
| 231 |
-
else:
|
| 232 |
-
try:
|
| 233 |
-
print(f"Uploading quantized model: {quantized_gguf_path}")
|
| 234 |
-
api.upload_file(
|
| 235 |
-
path_or_fileobj=quantized_gguf_path,
|
| 236 |
-
path_in_repo=quantized_gguf_name,
|
| 237 |
-
repo_id=new_repo_id,
|
| 238 |
-
)
|
| 239 |
-
except Exception as e:
|
| 240 |
-
raise Exception(f"Error uploading quantized model: {e}")
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
imatrix_path = "llama.cpp/imatrix.dat"
|
| 244 |
-
if os.path.isfile(imatrix_path):
|
| 245 |
-
try:
|
| 246 |
-
print(f"Uploading imatrix.dat: {imatrix_path}")
|
| 247 |
-
api.upload_file(
|
| 248 |
-
path_or_fileobj=imatrix_path,
|
| 249 |
-
path_in_repo="imatrix.dat",
|
| 250 |
-
repo_id=new_repo_id,
|
| 251 |
-
)
|
| 252 |
-
except Exception as e:
|
| 253 |
-
raise Exception(f"Error uploading imatrix.dat: {e}")
|
| 254 |
|
| 255 |
-
|
| 256 |
-
path_or_fileobj=f"README.md",
|
| 257 |
-
path_in_repo=f"README.md",
|
| 258 |
-
repo_id=new_repo_id,
|
| 259 |
-
)
|
| 260 |
-
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
| 261 |
|
| 262 |
return (
|
| 263 |
-
f'<h1>✅ DONE</h1><br
|
| 264 |
"llama.png",
|
| 265 |
)
|
| 266 |
except Exception as e:
|
| 267 |
-
return (f
|
| 268 |
|
| 269 |
|
| 270 |
css="""/* Custom CSS to allow scrolling */
|
|
@@ -332,7 +379,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 332 |
|
| 333 |
split_max_size = gr.Textbox(
|
| 334 |
label="Max File Size",
|
| 335 |
-
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
|
| 336 |
visible=False
|
| 337 |
)
|
| 338 |
|
|
|
|
| 12 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 13 |
|
| 14 |
|
| 15 |
+
# used for restarting the space
|
| 16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 17 |
+
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
| 18 |
+
|
| 19 |
+
# escape HTML for logging
|
| 20 |
+
def escape(s: str) -> str:
|
| 21 |
+
s = s.replace("&", "&") # Must be done first!
|
| 22 |
+
s = s.replace("<", "<")
|
| 23 |
+
s = s.replace(">", ">")
|
| 24 |
+
s = s.replace('"', """)
|
| 25 |
+
s = s.replace("\n", "<br/>")
|
| 26 |
+
return s
|
| 27 |
+
|
| 28 |
+
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
|
| 29 |
+
imatrix_command = [
|
| 30 |
+
"./llama.cpp/llama-imatrix",
|
| 31 |
+
"-m", model_path,
|
| 32 |
+
"-f", train_data_path,
|
| 33 |
+
"-ngl", "99",
|
| 34 |
+
"--output-frequency", "10",
|
| 35 |
+
"-o", output_path,
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
if not os.path.isfile(model_path):
|
| 39 |
raise Exception(f"Model file not found: {model_path}")
|
| 40 |
|
| 41 |
print("Running imatrix command...")
|
| 42 |
+
process = subprocess.Popen(imatrix_command, shell=False)
|
| 43 |
|
| 44 |
try:
|
| 45 |
process.wait(timeout=60) # added wait
|
|
|
|
| 52 |
print("Imatrix proc still didn't term. Forecfully terming process...")
|
| 53 |
process.kill()
|
| 54 |
|
|
|
|
|
|
|
| 55 |
print("Importance matrix generation completed.")
|
| 56 |
|
| 57 |
+
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
| 58 |
+
print(f"Model path: {model_path}")
|
| 59 |
+
print(f"Output dir: {outdir}")
|
| 60 |
+
|
| 61 |
if oauth_token.token is None:
|
| 62 |
raise ValueError("You have to be logged in.")
|
| 63 |
|
| 64 |
+
split_cmd = [
|
| 65 |
+
"./llama.cpp/llama-gguf-split",
|
| 66 |
+
"--split",
|
| 67 |
+
]
|
| 68 |
if split_max_size:
|
| 69 |
+
split_cmd.append("--split-max-size")
|
| 70 |
+
split_cmd.append(split_max_size)
|
| 71 |
+
else:
|
| 72 |
+
split_cmd.append("--split-max-tensors")
|
| 73 |
+
split_cmd.append(str(split_max_tensors))
|
| 74 |
+
|
| 75 |
+
# args for output
|
| 76 |
+
model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension
|
| 77 |
+
split_cmd.append(model_path)
|
| 78 |
+
split_cmd.append(model_path_prefix)
|
| 79 |
+
|
| 80 |
print(f"Split command: {split_cmd}")
|
| 81 |
|
| 82 |
+
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
|
| 83 |
print(f"Split command stdout: {result.stdout}")
|
| 84 |
print(f"Split command stderr: {result.stderr}")
|
| 85 |
|
| 86 |
if result.returncode != 0:
|
| 87 |
+
stderr_str = result.stderr.decode("utf-8")
|
| 88 |
+
raise Exception(f"Error splitting the model: {stderr_str}")
|
| 89 |
print("Model split successfully!")
|
| 90 |
+
|
| 91 |
+
# remove the original model file if needed
|
| 92 |
+
if os.path.exists(model_path):
|
| 93 |
+
os.remove(model_path)
|
| 94 |
+
|
| 95 |
+
model_file_prefix = model_path_prefix.split('/')[-1]
|
| 96 |
+
print(f"Model file name prefix: {model_file_prefix}")
|
| 97 |
+
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
|
| 98 |
if sharded_model_files:
|
| 99 |
print(f"Sharded model files: {sharded_model_files}")
|
| 100 |
api = HfApi(token=oauth_token.token)
|
| 101 |
for file in sharded_model_files:
|
| 102 |
+
file_path = os.path.join(outdir, file)
|
| 103 |
print(f"Uploading file: {file_path}")
|
| 104 |
try:
|
| 105 |
api.upload_file(
|
|
|
|
| 118 |
if oauth_token.token is None:
|
| 119 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
| 120 |
model_name = model_id.split('/')[-1]
|
|
|
|
| 121 |
|
| 122 |
try:
|
| 123 |
api = HfApi(token=oauth_token.token)
|
|
|
|
| 141 |
if not os.path.exists("downloads"):
|
| 142 |
os.makedirs("downloads")
|
| 143 |
|
| 144 |
+
if not os.path.exists("outputs"):
|
| 145 |
+
os.makedirs("outputs")
|
| 146 |
+
|
| 147 |
+
with tempfile.TemporaryDirectory(dir="outputs") as outdir:
|
| 148 |
+
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
| 149 |
+
|
| 150 |
+
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
|
| 151 |
+
# Keep the model name as the dirname so the model name metadata is populated correctly
|
| 152 |
+
local_dir = Path(tmpdir)/model_name
|
| 153 |
+
print(local_dir)
|
| 154 |
+
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 155 |
+
print("Model downloaded successfully!")
|
| 156 |
+
print(f"Current working directory: {os.getcwd()}")
|
| 157 |
+
print(f"Model directory contents: {os.listdir(local_dir)}")
|
| 158 |
+
|
| 159 |
+
config_dir = local_dir/"config.json"
|
| 160 |
+
adapter_config_dir = local_dir/"adapter_config.json"
|
| 161 |
+
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
| 162 |
+
raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.')
|
| 163 |
+
|
| 164 |
+
result = subprocess.run([
|
| 165 |
+
"python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16
|
| 166 |
+
], shell=False, capture_output=True)
|
| 167 |
+
print(result)
|
| 168 |
+
if result.returncode != 0:
|
| 169 |
+
stderr_str = result.stderr.decode("utf-8")
|
| 170 |
+
raise Exception(f"Error converting to fp16: {stderr_str}")
|
| 171 |
+
print("Model converted to fp16 successfully!")
|
| 172 |
+
print(f"Converted model path: {fp16}")
|
| 173 |
+
|
| 174 |
+
imatrix_path = Path(outdir)/"imatrix.dat"
|
| 175 |
+
|
| 176 |
+
if use_imatrix:
|
| 177 |
+
if train_data_file:
|
| 178 |
+
train_data_path = train_data_file.name
|
| 179 |
+
else:
|
| 180 |
+
train_data_path = "llama.cpp/groups_merged.txt" #fallback calibration dataset
|
| 181 |
+
|
| 182 |
+
print(f"Training data file path: {train_data_path}")
|
| 183 |
+
|
| 184 |
+
if not os.path.isfile(train_data_path):
|
| 185 |
+
raise Exception(f"Training data file not found: {train_data_path}")
|
| 186 |
+
|
| 187 |
+
generate_importance_matrix(fp16, train_data_path, imatrix_path)
|
| 188 |
+
else:
|
| 189 |
+
print("Not using imatrix quantization.")
|
| 190 |
+
|
| 191 |
+
# Quantize the model
|
| 192 |
+
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
| 193 |
+
quantized_gguf_path = str(Path(outdir)/quantized_gguf_name)
|
| 194 |
+
if use_imatrix:
|
| 195 |
+
quantise_ggml = [
|
| 196 |
+
"./llama.cpp/llama-quantize",
|
| 197 |
+
"--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method
|
| 198 |
+
]
|
| 199 |
+
else:
|
| 200 |
+
quantise_ggml = [
|
| 201 |
+
"./llama.cpp/llama-quantize",
|
| 202 |
+
fp16, quantized_gguf_path, q_method
|
| 203 |
+
]
|
| 204 |
+
result = subprocess.run(quantise_ggml, shell=False, capture_output=True)
|
| 205 |
if result.returncode != 0:
|
| 206 |
+
stderr_str = result.stderr.decode("utf-8")
|
| 207 |
+
raise Exception(f"Error quantizing: {stderr_str}")
|
| 208 |
+
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
| 209 |
+
print(f"Quantized model path: {quantized_gguf_path}")
|
| 210 |
|
| 211 |
+
# Create empty repo
|
| 212 |
+
username = whoami(oauth_token.token)["name"]
|
| 213 |
+
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
| 214 |
+
new_repo_id = new_repo_url.repo_id
|
| 215 |
+
print("Repo created successfully!", new_repo_url)
|
| 216 |
|
| 217 |
+
try:
|
| 218 |
+
card = ModelCard.load(model_id, token=oauth_token.token)
|
| 219 |
+
except:
|
| 220 |
+
card = ModelCard("")
|
| 221 |
+
if card.data.tags is None:
|
| 222 |
+
card.data.tags = []
|
| 223 |
+
card.data.tags.append("llama-cpp")
|
| 224 |
+
card.data.tags.append("gguf-my-repo")
|
| 225 |
+
card.data.base_model = model_id
|
| 226 |
+
card.text = dedent(
|
| 227 |
+
f"""
|
| 228 |
+
# {new_repo_id}
|
| 229 |
+
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
| 230 |
+
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
| 231 |
+
|
| 232 |
+
## Use with llama.cpp
|
| 233 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
| 234 |
+
|
| 235 |
+
```bash
|
| 236 |
+
brew install llama.cpp
|
| 237 |
+
|
| 238 |
+
```
|
| 239 |
+
Invoke the llama.cpp server or the CLI.
|
| 240 |
+
|
| 241 |
+
### CLI:
|
| 242 |
+
```bash
|
| 243 |
+
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
| 244 |
+
```
|
| 245 |
+
|
| 246 |
+
### Server:
|
| 247 |
+
```bash
|
| 248 |
+
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
| 249 |
+
```
|
| 250 |
+
|
| 251 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
| 252 |
+
|
| 253 |
+
Step 1: Clone llama.cpp from GitHub.
|
| 254 |
+
```
|
| 255 |
+
git clone https://github.com/ggerganov/llama.cpp
|
| 256 |
+
```
|
| 257 |
+
|
| 258 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
| 259 |
+
```
|
| 260 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
| 261 |
+
```
|
| 262 |
+
|
| 263 |
+
Step 3: Run inference through the main binary.
|
| 264 |
+
```
|
| 265 |
+
./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
| 266 |
+
```
|
| 267 |
+
or
|
| 268 |
+
```
|
| 269 |
+
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
| 270 |
+
```
|
| 271 |
+
"""
|
| 272 |
+
)
|
| 273 |
+
readme_path = Path(outdir)/"README.md"
|
| 274 |
+
card.save(readme_path)
|
| 275 |
|
| 276 |
+
if split_model:
|
| 277 |
+
split_upload_model(str(quantized_gguf_path), outdir, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
| 278 |
+
else:
|
| 279 |
+
try:
|
| 280 |
+
print(f"Uploading quantized model: {quantized_gguf_path}")
|
| 281 |
+
api.upload_file(
|
| 282 |
+
path_or_fileobj=quantized_gguf_path,
|
| 283 |
+
path_in_repo=quantized_gguf_name,
|
| 284 |
+
repo_id=new_repo_id,
|
| 285 |
+
)
|
| 286 |
+
except Exception as e:
|
| 287 |
+
raise Exception(f"Error uploading quantized model: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
+
if os.path.isfile(imatrix_path):
|
| 290 |
+
try:
|
| 291 |
+
print(f"Uploading imatrix.dat: {imatrix_path}")
|
| 292 |
+
api.upload_file(
|
| 293 |
+
path_or_fileobj=imatrix_path,
|
| 294 |
+
path_in_repo="imatrix.dat",
|
| 295 |
+
repo_id=new_repo_id,
|
| 296 |
+
)
|
| 297 |
+
except Exception as e:
|
| 298 |
+
raise Exception(f"Error uploading imatrix.dat: {e}")
|
| 299 |
+
|
| 300 |
+
api.upload_file(
|
| 301 |
+
path_or_fileobj=readme_path,
|
| 302 |
+
path_in_repo="README.md",
|
| 303 |
+
repo_id=new_repo_id,
|
| 304 |
+
)
|
| 305 |
+
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
+
# end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
return (
|
| 310 |
+
f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>',
|
| 311 |
"llama.png",
|
| 312 |
)
|
| 313 |
except Exception as e:
|
| 314 |
+
return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")
|
| 315 |
|
| 316 |
|
| 317 |
css="""/* Custom CSS to allow scrolling */
|
|
|
|
| 379 |
|
| 380 |
split_max_size = gr.Textbox(
|
| 381 |
label="Max File Size",
|
| 382 |
+
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
|
| 383 |
visible=False
|
| 384 |
)
|
| 385 |
|