import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_core.messages import SystemMessage, HumanMessage from langchain.tools.retriever import create_retriever_tool from langchain_qdrant import QdrantVectorStore from qdrant_client import QdrantClient from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from tools import multiply,add,subtract,divide,modulus,wiki_search,duckduckgo_search,arvix_search load_dotenv() with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/static-similarity-mrl-multilingual-v1", model_kwargs={'device': 'cpu'}) qdrant = QdrantClient( url=os.environ.get("QDRANT_URL"), api_key=os.environ.get("QDRANT_SERVICE_KEY") ) vector_store = QdrantVectorStore( client=qdrant, embedding=embeddings, collection_name="documents", ) create_retriever_tool = create_retriever_tool( retriever=vector_store.as_retriever(), name="Question Search", description="A tool to retrieve similar questions from a vector store.", ) tools = [ multiply, add, subtract, divide, modulus, wiki_search, duckduckgo_search, arvix_search, ] def build_graph(provider: str = "groq"): """Build the graph""" # Load environment variables from .env file model="" if provider == "google": # Google Gemini model = os.environ.get("GEMINI_MODEL") llm = ChatGoogleGenerativeAI(model=model, temperature=0) elif provider == "groq": # Groq https://console.groq.com/docs/models model = os.environ.get("GROQ_MODEL") llm = ChatGroq(model=model, temperature=0) elif provider == "huggingface": model = os.environ.get("HUGGINGFACEHUB_URL") llm = ChatHuggingFace( llm=HuggingFaceEndpoint( url=model, temperature=0, ), ) else: raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") # Bind tools to LLM llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} def retriever(state: MessagesState): """Retriever node""" similar_question = vector_store.similarity_search(state["messages"][0].content) print(similar_question[0]) example_msg = HumanMessage( content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", ) return {"messages": [sys_msg] + state["messages"] + [example_msg]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant") return builder.compile()