Spaces:
Runtime error
Runtime error
GabrielJuan349
commited on
Commit
·
659d842
1
Parent(s):
8ddaa0b
Uploading info to qdrant
Browse files- metadata.jsonl +0 -0
- upload_data.py +100 -0
metadata.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
upload_data.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from qdrant_client import QdrantClient
|
5 |
+
from qdrant_client.models import Distance, VectorParams, PointStruct
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
from langchain.schema import Document
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
# Configurar cliente Qdrant
|
12 |
+
qdrant = QdrantClient(
|
13 |
+
url=os.environ.get("QDRANT_URL"),
|
14 |
+
api_key=os.environ.get("QDRANT_SERVICE_KEY"),
|
15 |
+
timeout=60
|
16 |
+
)
|
17 |
+
|
18 |
+
# Configurar embeddings
|
19 |
+
embeddings = HuggingFaceEmbeddings(
|
20 |
+
model_name="sentence-transformers/static-similarity-mrl-multilingual-v1",
|
21 |
+
model_kwargs={'device': 'cpu'}
|
22 |
+
)
|
23 |
+
|
24 |
+
collection_name = "documents"
|
25 |
+
|
26 |
+
def create_collection():
|
27 |
+
"""Crear colección si no existe"""
|
28 |
+
try:
|
29 |
+
qdrant.get_collection(collection_name)
|
30 |
+
print(f"Colección '{collection_name}' ya existe")
|
31 |
+
except Exception:
|
32 |
+
print(f"Creando colección '{collection_name}'...")
|
33 |
+
qdrant.create_collection(
|
34 |
+
collection_name=collection_name,
|
35 |
+
vectors_config=VectorParams(
|
36 |
+
size=1024, # Dimensión correcta
|
37 |
+
distance=Distance.COSINE
|
38 |
+
)
|
39 |
+
)
|
40 |
+
print("Colección creada exitosamente")
|
41 |
+
|
42 |
+
def upload_embeddings_from_jsonl(file_path: str):
|
43 |
+
with open(file_path, 'r') as jsonl_file:
|
44 |
+
json_list = list(jsonl_file)
|
45 |
+
|
46 |
+
json_QA = []
|
47 |
+
for json_str in json_list:
|
48 |
+
json_data = json.loads(json_str)
|
49 |
+
json_QA.append(json_data)
|
50 |
+
docs = []
|
51 |
+
for sample in json_QA:
|
52 |
+
content = f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}"
|
53 |
+
doc = {
|
54 |
+
"content" : content,
|
55 |
+
"metadata" : {
|
56 |
+
"source" : sample['task_id']
|
57 |
+
},
|
58 |
+
"embedding" : embeddings.embed_query(content),
|
59 |
+
}
|
60 |
+
docs.append(doc)
|
61 |
+
print(f"Subiendo {len(docs)} documentos a Qdrant...")
|
62 |
+
try:
|
63 |
+
points = []
|
64 |
+
for idx, doc in enumerate(docs):
|
65 |
+
point = PointStruct(
|
66 |
+
id=idx,
|
67 |
+
vector=doc["embedding"],
|
68 |
+
payload={
|
69 |
+
"content": doc["content"],
|
70 |
+
"metadata": doc["metadata"]
|
71 |
+
}
|
72 |
+
)
|
73 |
+
points.append(point)
|
74 |
+
|
75 |
+
response = qdrant.upsert(
|
76 |
+
collection_name=collection_name,
|
77 |
+
points=points,
|
78 |
+
wait=True
|
79 |
+
)
|
80 |
+
print(response)
|
81 |
+
except Exception as exception:
|
82 |
+
print("Error inserting data into Qdrant:", exception)
|
83 |
+
|
84 |
+
|
85 |
+
def main():
|
86 |
+
# Crear colección
|
87 |
+
create_collection()
|
88 |
+
|
89 |
+
# Subir embeddings
|
90 |
+
jsonl_file = "./metadata.jsonl" # Ajusta la ruta si es necesario
|
91 |
+
if os.path.exists(jsonl_file):
|
92 |
+
print(f"Subiendo embeddings desde {jsonl_file}...")
|
93 |
+
# random_data()
|
94 |
+
upload_embeddings_from_jsonl(jsonl_file)
|
95 |
+
print("¡Embeddings subidos exitosamente!")
|
96 |
+
else:
|
97 |
+
print(f"Archivo {jsonl_file} no encontrado")
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
main()
|