Spaces:
Runtime error
Runtime error
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition, ToolNode | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain.tools.retriever import create_retriever_tool | |
from langchain_community.vectorstores import Qdrant | |
from qdrant_client import QdrantClient | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from tools import multiply,add,subtract,divide,modulus,wiki_search,duckduckgo_search,arvix_search | |
load_dotenv() | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# System message | |
sys_msg = SystemMessage(content=system_prompt) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/static-similarity-mrl-multilingual-v1", model_kwargs={'device': 'cpu'}) | |
qdrant = QdrantClient( | |
url=os.environ.get("QDRANT_URL"), | |
api_key=os.environ.get("QDRANT_SERVICE_KEY") | |
) | |
vector_store = Qdrant( | |
client=qdrant, | |
embeddings=embeddings, | |
collection_name="documents", | |
) | |
create_retriever_tool = create_retriever_tool( | |
retriever=vector_store.as_retriever(), | |
name="Question Search", | |
description="A tool to retrieve similar questions from a vector store.", | |
) | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulus, | |
wiki_search, | |
duckduckgo_search, | |
arvix_search, | |
] | |
def build_graph(provider: str = "groq"): | |
"""Build the graph""" | |
# Load environment variables from .env file | |
model="" | |
if provider == "google": | |
# Google Gemini | |
model = os.environ.get("GEMINI_MODEL") | |
llm = ChatGoogleGenerativeAI(model=model, temperature=0) | |
elif provider == "groq": | |
# Groq https://console.groq.com/docs/models | |
model = os.environ.get("GROQ_MODEL") | |
llm = ChatGroq(model=model, temperature=0) | |
elif provider == "huggingface": | |
model = os.environ.get("HUGGINGFACEHUB_URL") | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
url=model, | |
temperature=0, | |
), | |
) | |
else: | |
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") | |
# Bind tools to LLM | |
llm_with_tools = llm.bind_tools(tools) | |
def assistant(state: MessagesState): | |
"""Assistant node""" | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
def retriever(state: MessagesState): | |
"""Retriever node""" | |
similar_question = vector_store.similarity_search(state["messages"][0].content) | |
example_msg = HumanMessage( | |
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", | |
) | |
return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
builder.add_edge(START, "retriever") | |
builder.add_edge("retriever", "assistant") | |
builder.add_conditional_edges( | |
"assistant", | |
tools_condition, | |
) | |
builder.add_edge("tools", "assistant") | |
return builder.compile() |