FrezzyI's picture
Update app.py
874b0e6 verified
import gradio as gr
from PIL import Image
import torch
import numpy as np
from rembg import remove
from transformers import CLIPProcessor, CLIPModel
# Lade das Modell und den Prozessor
model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip")
processor = CLIPProcessor.from_pretrained("patrickjohncyh/fashion-clip")
# Prompts für jede Merkmalsgruppe
category_prompts = ["a t-shirt", "a long-sleeved shirt", "a hoodie", "a sweatshirt", "a pullover", "a tank top"]
color_prompts = ["a red garment", "a blue garment", "a black garment", "a white garment", "a green garment", "a yellow garment", "a gray garment", "a brown garment", "a pink garment", "a purple garment"]
pattern_prompts = ["a plain shirt", "a striped shirt", "a floral shirt", "a checked shirt", "a dotted shirt", "an abstract patterned shirt"]
fit_prompts = ["a slim fit shirt", "an oversized top", "a regular fit shirt", "a cropped shirt", "a shirt with a crew neck", "a shirt with a v-neck", "a shirt with a round neckline"]
# Hilfsfunktion: finde das passendste Prompt für eine Gruppe
def predict_best_prompt(image, prompts):
inputs = processor(text=prompts, images=[image], return_tensors="pt", padding=True)
with torch.no_grad():
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1).squeeze().tolist()
best_idx = torch.tensor(probs).argmax().item()
return prompts[best_idx], probs[best_idx]
# Hauptfunktion für die App
def analyze_image(image):
if image is None:
return None, "⚠️ Please upload or take a picture first."
# Hintergrund einmal entfernen!
image_np = np.array(image)
image_no_bg_np = remove(image_np)
segmented_image = Image.fromarray(image_no_bg_np)
# Vorhersage mit CLIP auf dem segmentierten Bild
results = {}
results["Category"], cat_score = predict_best_prompt(segmented_image, category_prompts)
results["Color"], color_score = predict_best_prompt(segmented_image, color_prompts)
results["Pattern"], pattern_score = predict_best_prompt(segmented_image, pattern_prompts)
results["Fit"], fit_score = predict_best_prompt(segmented_image, fit_prompts)
text_result = (
f"Category: {results['Category']} ({cat_score:.2f})\n"
f"Color: {results['Color']} ({color_score:.2f})\n"
f"Pattern: {results['Pattern']} ({pattern_score:.2f})\n"
f"Fit: {results['Fit']} ({fit_score:.2f})"
)
return segmented_image, text_result
# Gradio UI erstellen
iface = gr.Interface(
fn=analyze_image,
inputs=gr.Image(type="pil", label="Upload or take a picture", sources=["upload", "webcam"]),
outputs=[gr.Image(label="Segmentiertes Bild"), gr.Textbox(label="Vorhersage")],
title="Fashion Attribute Predictor (Prototype 2 + Segmentation)",
description="Das Modell entfernt zuerst den Hintergrund (Segmentierung) und erkennt dann Attribute mit FashionCLIP."
)
if __name__ == "__main__":
iface.launch()