|
import gradio as gr |
|
from PIL import Image |
|
import torch |
|
import numpy as np |
|
from rembg import remove |
|
from transformers import CLIPProcessor, CLIPModel |
|
|
|
|
|
model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip") |
|
processor = CLIPProcessor.from_pretrained("patrickjohncyh/fashion-clip") |
|
|
|
|
|
category_prompts = ["a t-shirt", "a long-sleeved shirt", "a hoodie", "a sweatshirt", "a pullover", "a tank top"] |
|
color_prompts = ["a red garment", "a blue garment", "a black garment", "a white garment", "a green garment", "a yellow garment", "a gray garment", "a brown garment", "a pink garment", "a purple garment"] |
|
pattern_prompts = ["a plain shirt", "a striped shirt", "a floral shirt", "a checked shirt", "a dotted shirt", "an abstract patterned shirt"] |
|
fit_prompts = ["a slim fit shirt", "an oversized top", "a regular fit shirt", "a cropped shirt", "a shirt with a crew neck", "a shirt with a v-neck", "a shirt with a round neckline"] |
|
|
|
|
|
def predict_best_prompt(image, prompts): |
|
inputs = processor(text=prompts, images=[image], return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits_per_image = outputs.logits_per_image |
|
probs = logits_per_image.softmax(dim=1).squeeze().tolist() |
|
best_idx = torch.tensor(probs).argmax().item() |
|
return prompts[best_idx], probs[best_idx] |
|
|
|
|
|
def analyze_image(image): |
|
if image is None: |
|
return None, "⚠️ Please upload or take a picture first." |
|
|
|
image_np = np.array(image) |
|
image_no_bg_np = remove(image_np) |
|
segmented_image = Image.fromarray(image_no_bg_np) |
|
|
|
|
|
results = {} |
|
results["Category"], cat_score = predict_best_prompt(segmented_image, category_prompts) |
|
results["Color"], color_score = predict_best_prompt(segmented_image, color_prompts) |
|
results["Pattern"], pattern_score = predict_best_prompt(segmented_image, pattern_prompts) |
|
results["Fit"], fit_score = predict_best_prompt(segmented_image, fit_prompts) |
|
|
|
text_result = ( |
|
f"Category: {results['Category']} ({cat_score:.2f})\n" |
|
f"Color: {results['Color']} ({color_score:.2f})\n" |
|
f"Pattern: {results['Pattern']} ({pattern_score:.2f})\n" |
|
f"Fit: {results['Fit']} ({fit_score:.2f})" |
|
) |
|
|
|
return segmented_image, text_result |
|
|
|
|
|
iface = gr.Interface( |
|
fn=analyze_image, |
|
inputs=gr.Image(type="pil", label="Upload or take a picture", sources=["upload", "webcam"]), |
|
outputs=[gr.Image(label="Segmentiertes Bild"), gr.Textbox(label="Vorhersage")], |
|
title="Fashion Attribute Predictor (Prototype 2 + Segmentation)", |
|
description="Das Modell entfernt zuerst den Hintergrund (Segmentierung) und erkennt dann Attribute mit FashionCLIP." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|