File size: 15,443 Bytes
5435413
 
de7bb17
 
 
 
 
 
 
 
5435413
 
 
 
9c2938b
4164789
 
9c2938b
4164789
 
 
5435413
 
9c2938b
5435413
de7bb17
 
5435413
de7bb17
 
5435413
 
 
 
 
 
de7bb17
5435413
 
b195c80
 
 
 
 
 
5435413
 
de7bb17
5435413
de7bb17
 
 
 
5435413
9c2938b
5435413
 
 
 
 
 
 
de7bb17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5435413
 
 
 
 
 
 
 
de7bb17
 
 
 
 
 
 
 
 
 
5435413
de7bb17
 
 
 
 
5435413
 
de7bb17
5435413
de7bb17
 
 
 
 
 
5435413
 
 
 
de7bb17
5435413
 
de7bb17
 
 
5435413
de7bb17
 
 
5435413
de7bb17
 
 
 
 
 
 
 
b195c80
 
 
 
 
de7bb17
 
 
 
 
 
b195c80
 
 
de7bb17
 
 
 
 
 
 
b195c80
 
 
 
 
 
de7bb17
 
 
5435413
 
 
de7bb17
 
 
 
 
 
 
 
 
 
 
 
 
 
dd3fe0a
 
 
 
b195c80
dd3fe0a
 
de7bb17
dd3fe0a
b195c80
 
 
 
 
de7bb17
 
 
 
 
 
b195c80
 
 
 
 
 
de7bb17
 
5435413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7bb17
 
 
 
 
 
9c2938b
de7bb17
 
 
 
 
 
5435413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7bb17
5435413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
<script lang="ts">
  import type { GradioClient } from '$lib/types';
  import { 
    initializeTrainerScanProgress, 
    getNextPendingImage, 
    markImageProcessingCompleted,
    markImageProcessingFailed,
    getScanningStats
  } from '$lib/db/trainerScanning';
  import PicletGenerator from '$lib/components/PicletGenerator/PicletGenerator.svelte';
  
  interface Props {
    joyCaptionClient: GradioClient;
    fluxClient: GradioClient;
    commandClient: GradioClient;
    
    // Unused clients (kept for future use)
    // hunyuanClient: GradioClient;
    // zephyrClient: GradioClient;
    // qwenClient: GradioClient;
    // dotsClient: GradioClient;
  }
  
  let { joyCaptionClient, fluxClient, commandClient }: Props = $props();
  
  // Scanner state
  let scanState = $state({
    isScanning: false,
    currentImage: null as string | null,
    currentTrainer: null as string | null,
    progress: {
      total: 0,
      completed: 0,
      failed: 0,
      pending: 0
    },
    error: null as string | null
  });
  
  // Promise tracking for current image processing
  let currentImagePromise: {
    resolve: (value: any) => void;
    reject: (error: any) => void;
  } | null = null;
  
  let showDetails = $state(false);
  let isInitializing = $state(false);
  let shouldStop = $state(false);
  
  // Reference to PicletGenerator component
  let picletGenerator: any;
  
  // Initialize trainer paths on component mount
  $effect(() => {
    if (joyCaptionClient && fluxClient && commandClient) {
      loadInitialState();
    }
  });
  
  async function loadInitialState() {
    try {
      isInitializing = true;
      
      // Load trainer image paths and initialize database
      const response = await fetch('/trainer_image_paths.txt');
      if (!response.ok) {
        throw new Error(`Failed to fetch trainer_image_paths.txt: ${response.statusText}`);
      }
      
      const content = await response.text();
      const imagePaths = content.trim().split('\n')
        .map(path => typeof path === 'string' ? path.trim() : '')
        .filter(path => path.length > 0);
      
      console.log(`Loaded ${imagePaths.length} trainer image paths`);
      
      await initializeTrainerScanProgress(imagePaths);
      await updateProgress();
    } catch (error) {
      console.error('Failed to initialize scanner:', error);
      scanState.error = error instanceof Error ? error.message : 'Failed to initialize';
    } finally {
      isInitializing = false;
    }
  }
  
  async function updateProgress() {
    const stats = await getScanningStats();
    scanState.progress = {
      total: stats.total,
      completed: stats.completed,
      failed: stats.failed,
      pending: stats.pending
    };
  }
  
  async function startScanning() {
    if (scanState.isScanning) return;
    
    scanState.isScanning = true;
    scanState.error = null;
    shouldStop = false;
    
    try {
      await processTrainerImages();
    } catch (error) {
      console.error('Scanning error:', error);
      scanState.error = error instanceof Error ? error.message : 'Unknown error';
    } finally {
      scanState.isScanning = false;
      scanState.currentImage = null;
      scanState.currentTrainer = null;
    }
  }
  
  function stopScanning() {
    shouldStop = true;
  }
  
  async function processTrainerImages() {
    while (!shouldStop) {
      const nextImage = await getNextPendingImage();
      
      if (!nextImage) {
        // No more pending images
        break;
      }
      
      scanState.currentImage = nextImage.imagePath;
      scanState.currentTrainer = nextImage.trainerName;
      
      try {
        // Fetch remote image
        const imageFile = await fetchRemoteImage(nextImage.remoteUrl, nextImage.imagePath);
        
        // Create a Promise that will be resolved by the completion callback
        const imageProcessingPromise = new Promise<void>((resolve, reject) => {
          currentImagePromise = { resolve, reject };
        });
        
        // Queue the image in PicletGenerator
        if (picletGenerator) {
          picletGenerator.queueTrainerImage(imageFile, nextImage.imagePath);
        }
        
        // Wait for this image to be processed before continuing
        console.log(`🔧 DEBUG: Waiting for completion of ${nextImage.imagePath}...`);
        await imageProcessingPromise;
        console.log(`✅ DEBUG: Completed processing of ${nextImage.imagePath}, moving to next image`);
        
      } catch (error) {
        console.error(`Failed to process ${nextImage.imagePath}:`, error);
        await markImageProcessingFailed(
          nextImage.imagePath, 
          error instanceof Error ? error.message : 'Unknown error'
        );
        
        // Reject the current promise if it exists
        if (currentImagePromise) {
          currentImagePromise.reject(error);
          currentImagePromise = null;
        }
      }
      
      await updateProgress();
    }
  }
  
  async function fetchRemoteImage(remoteUrl: string, originalPath: string): Promise<File> {
    const response = await fetch(remoteUrl);
    if (!response.ok) {
      throw new Error(`Failed to fetch ${remoteUrl}: ${response.statusText}`);
    }
    
    const blob = await response.blob();
    const fileName = originalPath.split('/').pop() || 'trainer_image.jpg';
    
    return new File([blob], fileName, { type: blob.type });
  }
  
  async function onTrainerImageCompleted(imagePath: string, picletId: number) {
    console.log(`✅ Trainer image completed: ${imagePath} -> Piclet ID: ${picletId}`);
    
    try {
      await markImageProcessingCompleted(imagePath, picletId);
    } catch (error) {
      console.error(`❌ Failed to mark ${imagePath} as completed:`, error);
    }
    
    await updateProgress();
    
    // Resolve the current image processing promise
    if (currentImagePromise) {
      currentImagePromise.resolve(undefined);
      currentImagePromise = null;
    }
  }
  
  async function onTrainerImageFailed(imagePath: string, error: string) {
    console.error(`❌ Trainer image failed: ${imagePath} -> ${error}`);
    await markImageProcessingFailed(imagePath, error);
    await updateProgress();
    
    // Resolve the current image processing promise (failed images should still allow progression)
    if (currentImagePromise) {
      currentImagePromise.resolve(undefined);
      currentImagePromise = null;
    }
  }
  
  function formatImageName(imagePath: string | null): string {
    if (!imagePath) return '';
    const parts = imagePath.split('/');
    return parts[parts.length - 1] || '';
  }
  
  function formatTrainerName(trainerName: string | null): string {
    if (!trainerName) return '';
    // Convert "001_Willow_Snap" to "Willow Snap"
    return trainerName.split('_').slice(1).join(' ');
  }
  
  function getProgressPercent(): number {
    const { total, completed } = scanState.progress;
    return total > 0 ? Math.round((completed / total) * 100) : 0;
  }
</script>

<div class="auto-trainer-scanner">
  <div class="scanner-header">
    <div class="title-section">
      <h3>🤖 Auto Trainer Scanner</h3>
      <button 
        class="details-toggle"
        onclick={() => showDetails = !showDetails}
      >
        {showDetails ? '▼' : '▶'} Details
      </button>
    </div>
    
    {#if scanState.progress.total > 0}
      <div class="progress-summary">
        <div class="progress-bar">
          <div 
            class="progress-fill" 
            style="width: {getProgressPercent()}%"
          ></div>
        </div>
        <span class="progress-text">
          {scanState.progress.completed} / {scanState.progress.total} ({getProgressPercent()}%)
        </span>
      </div>
    {/if}
  </div>

  {#if showDetails}
    <div class="scanner-details">
      {#if isInitializing}
        <div class="status-message">
          <div class="spinner"></div>
          <span>Initializing scanner...</span>
        </div>
      {:else if scanState.isScanning}
        <div class="scanning-status">
          <div class="current-processing">
            <div class="spinner"></div>
            <div class="processing-info">
              <div class="current-trainer">
                Processing: <strong>{formatTrainerName(scanState.currentTrainer)}</strong>
              </div>
              <div class="current-image">
                {formatImageName(scanState.currentImage)}
              </div>
            </div>
          </div>
          
          <button class="stop-button" onclick={stopScanning}>
            ⏹️ Stop Scanning
          </button>
        </div>
      {:else}
        <div class="scanner-controls">
          <button 
            class="start-button"
            onclick={startScanning}
            disabled={scanState.progress.pending === 0}
          >
            ▶️ Start Auto Scan
          </button>
        </div>
      {/if}
      
      {#if scanState.progress.total > 0}
        <div class="progress-details">
          <div class="progress-stats">
            <div class="stat">
              <span class="stat-label">Total:</span>
              <span class="stat-value">{scanState.progress.total}</span>
            </div>
            <div class="stat completed">
              <span class="stat-label">Completed:</span>
              <span class="stat-value">{scanState.progress.completed}</span>
            </div>
            <div class="stat pending">
              <span class="stat-label">Pending:</span>
              <span class="stat-value">{scanState.progress.pending}</span>
            </div>
            {#if scanState.progress.failed > 0}
              <div class="stat failed">
                <span class="stat-label">Failed:</span>
                <span class="stat-value">{scanState.progress.failed}</span>
              </div>
            {/if}
          </div>
        </div>
      {/if}
      
      {#if scanState.error}
        <div class="error-message">
          <strong>Error:</strong> {scanState.error}
        </div>
      {/if}
      
      <div class="scanner-info">
        <p>
          This will automatically process trainer images from the HuggingFace dataset,
          converting them into unique Piclets. The scanner will resume from where it left off
          if interrupted.
        </p>
      </div>
    </div>
  {/if}
</div>

<!-- Hidden PicletGenerator for trainer mode processing -->
<div style="display: none;">
  <PicletGenerator 
    bind:this={picletGenerator}
    {joyCaptionClient}
    {fluxClient}
    {commandClient}
    isTrainerMode={true}
    onTrainerImageCompleted={onTrainerImageCompleted}
    onTrainerImageFailed={onTrainerImageFailed}
  />
</div>

<style>
  .auto-trainer-scanner {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    border-radius: 12px;
    padding: 1rem;
    margin-bottom: 1rem;
    color: white;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
  }
  
  .scanner-header {
    display: flex;
    flex-direction: column;
    gap: 0.5rem;
  }
  
  .title-section {
    display: flex;
    align-items: center;
    justify-content: space-between;
  }
  
  .title-section h3 {
    margin: 0;
    font-size: 1.1rem;
  }
  
  .details-toggle {
    background: rgba(255, 255, 255, 0.2);
    border: none;
    color: white;
    padding: 0.3rem 0.6rem;
    border-radius: 6px;
    cursor: pointer;
    font-size: 0.9rem;
    transition: background-color 0.2s;
  }
  
  .details-toggle:hover {
    background: rgba(255, 255, 255, 0.3);
  }
  
  .progress-summary {
    display: flex;
    align-items: center;
    gap: 1rem;
  }
  
  .progress-bar {
    flex: 1;
    height: 8px;
    background: rgba(255, 255, 255, 0.2);
    border-radius: 4px;
    overflow: hidden;
  }
  
  .progress-fill {
    height: 100%;
    background: linear-gradient(90deg, #4facfe 0%, #00f2fe 100%);
    transition: width 0.3s ease;
  }
  
  .progress-text {
    font-size: 0.9rem;
    font-weight: 500;
    white-space: nowrap;
  }
  
  .scanner-details {
    margin-top: 1rem;
    padding-top: 1rem;
    border-top: 1px solid rgba(255, 255, 255, 0.2);
  }
  
  .status-message {
    display: flex;
    align-items: center;
    gap: 0.5rem;
    padding: 0.8rem;
    background: rgba(255, 255, 255, 0.1);
    border-radius: 8px;
    margin-bottom: 1rem;
  }
  
  .scanning-status {
    display: flex;
    flex-direction: column;
    gap: 1rem;
  }
  
  .current-processing {
    display: flex;
    align-items: center;
    gap: 1rem;
    padding: 1rem;
    background: rgba(255, 255, 255, 0.1);
    border-radius: 8px;
  }
  
  .processing-info {
    flex: 1;
  }
  
  .current-trainer {
    font-size: 1rem;
    margin-bottom: 0.3rem;
  }
  
  .current-image {
    font-size: 0.9rem;
    opacity: 0.8;
  }
  
  .scanner-controls {
    display: flex;
    gap: 0.8rem;
    margin-bottom: 1rem;
  }
  
  .start-button, .stop-button {
    padding: 0.8rem 1.2rem;
    border: none;
    border-radius: 8px;
    font-weight: 500;
    cursor: pointer;
    transition: all 0.2s;
  }
  
  .start-button {
    background: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);
    color: white;
  }
  
  .start-button:hover:not(:disabled) {
    transform: translateY(-1px);
    box-shadow: 0 4px 8px rgba(79, 172, 254, 0.3);
  }
  
  .start-button:disabled {
    background: rgba(255, 255, 255, 0.3);
    cursor: not-allowed;
    opacity: 0.6;
  }
  
  .stop-button {
    background: linear-gradient(135deg, #ff6b6b 0%, #ee5a24 100%);
    color: white;
  }
  
  .stop-button:hover {
    transform: translateY(-1px);
    box-shadow: 0 4px 8px rgba(255, 107, 107, 0.3);
  }
  
  
  .progress-details {
    margin-bottom: 1rem;
  }
  
  .progress-stats {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(120px, 1fr));
    gap: 0.8rem;
  }
  
  .stat {
    display: flex;
    justify-content: space-between;
    align-items: center;
    padding: 0.6rem;
    background: rgba(255, 255, 255, 0.1);
    border-radius: 6px;
    border-left: 3px solid rgba(255, 255, 255, 0.5);
  }
  
  .stat.completed {
    border-left-color: #4caf50;
  }
  
  .stat.pending {
    border-left-color: #ff9800;
  }
  
  .stat.failed {
    border-left-color: #f44336;
  }
  
  .stat-label {
    font-size: 0.9rem;
    opacity: 0.9;
  }
  
  .stat-value {
    font-weight: 600;
    font-size: 1rem;
  }
  
  .error-message {
    background: rgba(244, 67, 54, 0.2);
    border: 1px solid rgba(244, 67, 54, 0.4);
    border-radius: 8px;
    padding: 0.8rem;
    margin-bottom: 1rem;
    font-size: 0.9rem;
  }
  
  .scanner-info {
    background: rgba(255, 255, 255, 0.1);
    border-radius: 8px;
    padding: 0.8rem;
    font-size: 0.9rem;
    line-height: 1.4;
  }
  
  .scanner-info p {
    margin: 0;
    opacity: 0.9;
  }
  
  .spinner {
    width: 20px;
    height: 20px;
    border: 2px solid rgba(255, 255, 255, 0.3);
    border-top: 2px solid white;
    border-radius: 50%;
    animation: spin 1s linear infinite;
  }
  
  @keyframes spin {
    to { transform: rotate(360deg); }
  }
  
  @media (max-width: 768px) {
    .progress-summary {
      flex-direction: column;
      align-items: stretch;
      gap: 0.5rem;
    }
    
    .current-processing {
      flex-direction: column;
      align-items: flex-start;
      text-align: left;
    }
    
    .scanner-controls {
      flex-direction: column;
    }
    
    .progress-stats {
      grid-template-columns: 1fr;
    }
  }
</style>