Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import requests
|
|
4 |
import json
|
5 |
import speech_recognition as sr
|
6 |
from tempfile import NamedTemporaryFile
|
7 |
-
import pyttsx3
|
8 |
import logging
|
9 |
import time
|
10 |
from huggingface_hub import HfApi
|
@@ -15,7 +14,6 @@ logger = logging.getLogger(__name__)
|
|
15 |
|
16 |
# Environment Variables
|
17 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
18 |
-
#HF_REPO_ID = os.environ.get("HF_REPO_ID") # e.g., username/dataset
|
19 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
20 |
GROQ_MODEL = os.getenv("GROQ_MODEL", "mixtral-8x7b-32768")
|
21 |
GROQ_API_URL = "https://api.groq.com/openai/v1/chat/completions"
|
@@ -25,9 +23,6 @@ headers = {
|
|
25 |
"Content-Type": "application/json"
|
26 |
}
|
27 |
|
28 |
-
# Hugging Face API Client
|
29 |
-
hf_api = HfApi()
|
30 |
-
|
31 |
# Emotion descriptions
|
32 |
emotion_options = {
|
33 |
"neutral": "Neutral or balanced mood",
|
@@ -44,6 +39,7 @@ emotion_options = {
|
|
44 |
conversation_history = []
|
45 |
|
46 |
# Transcribe audio
|
|
|
47 |
def transcribe_audio(audio_path):
|
48 |
recognizer = sr.Recognizer()
|
49 |
try:
|
@@ -56,6 +52,7 @@ def transcribe_audio(audio_path):
|
|
56 |
return ""
|
57 |
|
58 |
# Generate Groq response
|
|
|
59 |
def get_groq_response(prompt, history):
|
60 |
messages = [{"role": "system", "content": prompt}]
|
61 |
for msg in history:
|
@@ -76,31 +73,32 @@ def get_groq_response(prompt, history):
|
|
76 |
logger.error(f"Groq API error: {e}")
|
77 |
return "Error contacting AI."
|
78 |
|
79 |
-
# Generate
|
|
|
80 |
def generate_speech_and_upload(text):
|
81 |
try:
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
temp_file = NamedTemporaryFile(delete=False, suffix=".wav")
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
hf_path = f"audio_responses/{os.path.basename(audio_path)}"
|
90 |
-
hf_api.upload_file(
|
91 |
-
path_or_fileobj=audio_path,
|
92 |
-
path_in_repo=hf_path,
|
93 |
-
repo_id=HF_REPO_ID,
|
94 |
-
repo_type="dataset",
|
95 |
-
token=HF_TOKEN
|
96 |
-
)
|
97 |
-
|
98 |
-
return audio_path
|
99 |
except Exception as e:
|
100 |
-
logger.error(f"
|
101 |
return None
|
102 |
|
103 |
# Main handler
|
|
|
104 |
def chat_with_ai(audio, text_input, emotion, history):
|
105 |
global conversation_history
|
106 |
user_text = text_input or ""
|
@@ -123,6 +121,7 @@ def chat_with_ai(audio, text_input, emotion, history):
|
|
123 |
audio_path = generate_speech_and_upload(ai_response)
|
124 |
return ai_response, audio_path, history + [[user_text, ai_response]]
|
125 |
|
|
|
126 |
def clear_conversation():
|
127 |
global conversation_history
|
128 |
conversation_history = []
|
@@ -134,13 +133,15 @@ iface = gr.Blocks()
|
|
134 |
with iface:
|
135 |
gr.Markdown("# Mind AID AI Assistant")
|
136 |
gr.Markdown("Talk or type to the AI assistant. Your emotional state helps tailor the response.")
|
137 |
-
|
138 |
with gr.Row():
|
139 |
with gr.Column(scale=3):
|
140 |
emotion = gr.Dropdown(label="Your emotion?", choices=list(emotion_options.keys()), value="neutral")
|
141 |
emotion_description = gr.Markdown("**Current mood:** Neutral")
|
|
|
142 |
def update_emotion_desc(em):
|
143 |
return f"**Current mood:** {emotion_options.get(em, 'Unknown')}"
|
|
|
144 |
emotion.change(fn=update_emotion_desc, inputs=[emotion], outputs=[emotion_description])
|
145 |
with gr.Column(scale=1):
|
146 |
clear_btn = gr.Button("Clear Conversation")
|
@@ -173,4 +174,8 @@ with iface:
|
|
173 |
outputs=[chat_history, audio_input, text_input, status]
|
174 |
)
|
175 |
|
176 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
4 |
import json
|
5 |
import speech_recognition as sr
|
6 |
from tempfile import NamedTemporaryFile
|
|
|
7 |
import logging
|
8 |
import time
|
9 |
from huggingface_hub import HfApi
|
|
|
14 |
|
15 |
# Environment Variables
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
17 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
18 |
GROQ_MODEL = os.getenv("GROQ_MODEL", "mixtral-8x7b-32768")
|
19 |
GROQ_API_URL = "https://api.groq.com/openai/v1/chat/completions"
|
|
|
23 |
"Content-Type": "application/json"
|
24 |
}
|
25 |
|
|
|
|
|
|
|
26 |
# Emotion descriptions
|
27 |
emotion_options = {
|
28 |
"neutral": "Neutral or balanced mood",
|
|
|
39 |
conversation_history = []
|
40 |
|
41 |
# Transcribe audio
|
42 |
+
|
43 |
def transcribe_audio(audio_path):
|
44 |
recognizer = sr.Recognizer()
|
45 |
try:
|
|
|
52 |
return ""
|
53 |
|
54 |
# Generate Groq response
|
55 |
+
|
56 |
def get_groq_response(prompt, history):
|
57 |
messages = [{"role": "system", "content": prompt}]
|
58 |
for msg in history:
|
|
|
73 |
logger.error(f"Groq API error: {e}")
|
74 |
return "Error contacting AI."
|
75 |
|
76 |
+
# Generate TTS using Yarngpt
|
77 |
+
|
78 |
def generate_speech_and_upload(text):
|
79 |
try:
|
80 |
+
hf_model_id = "saheedniyi/Yarngpt"
|
81 |
+
inference_url = f"https://api-inference.huggingface.co/models/{hf_model_id}"
|
82 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
83 |
+
payload = {"inputs": text}
|
84 |
+
|
85 |
+
response = requests.post(inference_url, headers=headers, json=payload)
|
86 |
+
if response.status_code != 200:
|
87 |
+
logger.error(f"Hugging Face TTS API error: {response.text}")
|
88 |
+
return None
|
89 |
+
|
90 |
temp_file = NamedTemporaryFile(delete=False, suffix=".wav")
|
91 |
+
with open(temp_file.name, "wb") as f:
|
92 |
+
f.write(response.content)
|
93 |
+
|
94 |
+
return temp_file.name
|
95 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
except Exception as e:
|
97 |
+
logger.error(f"Hugging Face TTS error: {e}")
|
98 |
return None
|
99 |
|
100 |
# Main handler
|
101 |
+
|
102 |
def chat_with_ai(audio, text_input, emotion, history):
|
103 |
global conversation_history
|
104 |
user_text = text_input or ""
|
|
|
121 |
audio_path = generate_speech_and_upload(ai_response)
|
122 |
return ai_response, audio_path, history + [[user_text, ai_response]]
|
123 |
|
124 |
+
|
125 |
def clear_conversation():
|
126 |
global conversation_history
|
127 |
conversation_history = []
|
|
|
133 |
with iface:
|
134 |
gr.Markdown("# Mind AID AI Assistant")
|
135 |
gr.Markdown("Talk or type to the AI assistant. Your emotional state helps tailor the response.")
|
136 |
+
|
137 |
with gr.Row():
|
138 |
with gr.Column(scale=3):
|
139 |
emotion = gr.Dropdown(label="Your emotion?", choices=list(emotion_options.keys()), value="neutral")
|
140 |
emotion_description = gr.Markdown("**Current mood:** Neutral")
|
141 |
+
|
142 |
def update_emotion_desc(em):
|
143 |
return f"**Current mood:** {emotion_options.get(em, 'Unknown')}"
|
144 |
+
|
145 |
emotion.change(fn=update_emotion_desc, inputs=[emotion], outputs=[emotion_description])
|
146 |
with gr.Column(scale=1):
|
147 |
clear_btn = gr.Button("Clear Conversation")
|
|
|
174 |
outputs=[chat_history, audio_input, text_input, status]
|
175 |
)
|
176 |
|
177 |
+
iface.launch()
|
178 |
+
|
179 |
+
|
180 |
+
Here is the complete revised code with Yarngpt integrated for text-to-speech output via Hugging Face. Make sure your HF_TOKEN is correctly set in your environment and has access to the model saheedniyi/Yarngpt. Let me know if you need help deploying this.
|
181 |
+
|