R1-Onevision / app.py
Fancy-MLLM's picture
Update app.py
6a423bd verified
raw
history blame
3.26 kB
import gradio as gr
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from threading import Thread
from qwen_vl_utils import process_vision_info
import torch
import time
# Check if a GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
local_path = "Fancy-MLLM/R1-OneVision-7B"
# Load the model on the appropriate device (GPU if available, otherwise CPU)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
local_path, torch_dtype="auto", device_map=device
)
processor = AutoProcessor.from_pretrained(local_path)
def generate_output(image, text, button_click):
# Prepare input data
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image, 'min_pixels': 1003520, 'max_pixels': 12845056},
{"type": "text", "text": text},
],
}
]
# Prepare inputs for the model
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text_input],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
# Move inputs to the same device as the model
inputs = inputs.to(model.device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=4096,
top_p=0.001,
top_k=1,
temperature=0.01,
repetition_penalty=1.0,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ''
try:
for new_text in streamer:
generated_text += new_text
yield f"β€Ž{generated_text}"
except Exception as e:
print(f"Error: {e}")
yield f"Error occurred: {str(e)}"
Css = """
#output-markdown {
overflow-y: auto;
white-space: pre-wrap;
word-wrap: break-word;
}
#output-markdown .math {
overflow-x: auto;
max-width: 100%;
}
.markdown-text {
white-space: pre-wrap;
word-wrap: break-word;
}
.markdown-output {
min-height: 20vh;
max-width: 100%;
overflow-y: auto;
}
#qwen-md .katex-display { display: inline; }
#qwen-md .katex-display>.katex { display: inline; }
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
"""
with gr.Blocks(css=Css) as demo:
gr.HTML("""<center><font size=8>πŸ¦– R1-OneVision Demo</center>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload") # **ζ”Ήε›ž PIL 倄理**
input_text = gr.Textbox(label="Input your question")
with gr.Row():
clear_btn = gr.ClearButton([input_image, input_text])
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
output_text = gr.Markdown(elem_id="qwen-md", container=True, elem_classes="markdown-output")
submit_btn.click(fn=generate_output, inputs=[input_image, input_text], outputs=output_text)
demo.launch(share=True)