from charset_normalizer import detect import numpy as np import gradio as gr import torch import torch.nn as nn import cv2 import os from numpy import random from metadata.utils.utils import decodeImage from metadata.predictor_yolo_detector.detector_test import Detector from PIL import Image class ClientApp: def __init__(self): self.filename = "inputImage.jpg" #modelPath = 'research/ssd_mobilenet_v1_coco_2017_11_17' self.objectDetection = Detector(self.filename) clApp = ClientApp() def predict_image(input_img): img = Image.fromarray(input_img) img.save("./metadata/predictor_yolo_detector/inference/images/"+ clApp.filename) resultant_img = clApp.objectDetection.detect_action() return resultant_img demo = gr.Blocks() with demo: gr.Markdown( """