Spaces:
Running
Running
""" | |
Leaderboard module for Dynamic Highscores system. | |
This module implements the unified leaderboard with tag-based filtering | |
for displaying all evaluated models. | |
""" | |
import os | |
import json | |
import pandas as pd | |
import gradio as gr | |
import plotly.express as px | |
import plotly.graph_objects as go | |
class Leaderboard: | |
"""Manages the unified leaderboard with filtering capabilities.""" | |
def __init__(self, db_manager): | |
"""Initialize the leaderboard manager. | |
Args: | |
db_manager: Database manager instance | |
""" | |
self.db_manager = db_manager | |
self.model_tags = ["All", "Merge", "Agent", "Reasoning", "Coding", "General", "Specialized", "Instruction", "Chat"] | |
# Define color scheme for tags | |
self.tag_colors = { | |
"Merge": "#FF6B6B", | |
"Agent": "#4ECDC4", | |
"Reasoning": "#FFD166", | |
"Coding": "#6B5B95", | |
"General": "#88D8B0", | |
"Specialized": "#FF8C42", | |
"Instruction": "#5D9CEC", | |
"Chat": "#AC92EB" | |
} | |
def get_leaderboard_data(self, tag=None, benchmark_id=None): | |
"""Get leaderboard data, optionally filtered by tag or benchmark. | |
Args: | |
tag: Model tag to filter by (None for all) | |
benchmark_id: Benchmark ID to filter by (None for all) | |
Returns: | |
pd.DataFrame: Leaderboard data | |
""" | |
# Get evaluation results from database | |
if tag and tag != "All": | |
df = self.db_manager.get_leaderboard_df(tag=tag, benchmark_id=benchmark_id) | |
else: | |
df = self.db_manager.get_leaderboard_df(benchmark_id=benchmark_id) | |
return df | |
def format_leaderboard_for_display(self, df): | |
"""Format leaderboard data for display. | |
Args: | |
df: Leaderboard DataFrame | |
Returns: | |
pd.DataFrame: Formatted leaderboard for display | |
""" | |
if df.empty: | |
return pd.DataFrame(columns=['Model', 'Benchmark', 'Tag', 'Score', 'Completed']) | |
# Select and rename columns for display | |
display_df = df[['model_name', 'benchmark_name', 'tag', 'score', 'completed_at']].copy() | |
display_df.columns = ['Model', 'Benchmark', 'Tag', 'Score', 'Completed'] | |
# Round score to 2 decimal places | |
display_df['Score'] = display_df['Score'].round(2) | |
# Sort by score (descending) | |
display_df = display_df.sort_values('Score', ascending=False) | |
return display_df | |
def create_performance_chart(self, df, chart_type="bar"): | |
"""Create a performance chart from leaderboard data. | |
Args: | |
df: Leaderboard DataFrame | |
chart_type: Type of chart to create ("bar" or "scatter") | |
Returns: | |
plotly.graph_objects.Figure: Performance chart | |
""" | |
if df.empty: | |
# Return empty figure | |
fig = go.Figure() | |
fig.update_layout( | |
title="No data available", | |
xaxis_title="Model", | |
yaxis_title="Score" | |
) | |
return fig | |
# Prepare data for visualization | |
plot_df = df[['model_name', 'benchmark_name', 'tag', 'score']].copy() | |
plot_df.columns = ['Model', 'Benchmark', 'Tag', 'Score'] | |
# Create chart based on type | |
if chart_type == "scatter": | |
fig = px.scatter( | |
plot_df, | |
x="Model", | |
y="Score", | |
color="Tag", | |
symbol="Benchmark", | |
size="Score", | |
hover_data=["Model", "Benchmark", "Score"], | |
color_discrete_map=self.tag_colors | |
) | |
else: # Default to bar chart | |
fig = px.bar( | |
plot_df, | |
x="Model", | |
y="Score", | |
color="Tag", | |
barmode="group", | |
hover_data=["Model", "Benchmark", "Score"], | |
color_discrete_map=self.tag_colors | |
) | |
# Customize layout | |
fig.update_layout( | |
title="Model Performance Comparison", | |
xaxis_title="Model", | |
yaxis_title="Score", | |
legend_title="Tag", | |
font=dict(size=12) | |
) | |
return fig | |
def create_tag_distribution_chart(self, df): | |
"""Create a chart showing distribution of models by tag. | |
Args: | |
df: Leaderboard DataFrame | |
Returns: | |
plotly.graph_objects.Figure: Tag distribution chart | |
""" | |
if df.empty: | |
# Return empty figure | |
fig = go.Figure() | |
fig.update_layout( | |
title="No data available", | |
xaxis_title="Tag", | |
yaxis_title="Count" | |
) | |
return fig | |
# Count models by tag | |
tag_counts = df['tag'].value_counts().reset_index() | |
tag_counts.columns = ['Tag', 'Count'] | |
# Create pie chart | |
fig = px.pie( | |
tag_counts, | |
names='Tag', | |
values='Count', | |
title='Model Distribution by Tag', | |
color='Tag', | |
color_discrete_map=self.tag_colors | |
) | |
# Customize layout | |
fig.update_layout( | |
font=dict(size=12) | |
) | |
return fig | |
def create_benchmark_comparison_chart(self, df): | |
"""Create a chart comparing performance across benchmarks. | |
Args: | |
df: Leaderboard DataFrame | |
Returns: | |
plotly.graph_objects.Figure: Benchmark comparison chart | |
""" | |
if df.empty: | |
# Return empty figure | |
fig = go.Figure() | |
fig.update_layout( | |
title="No data available", | |
xaxis_title="Benchmark", | |
yaxis_title="Average Score" | |
) | |
return fig | |
# Calculate average score by benchmark | |
benchmark_avg = df.groupby('benchmark_name')['score'].mean().reset_index() | |
benchmark_avg.columns = ['Benchmark', 'Average Score'] | |
# Create bar chart | |
fig = px.bar( | |
benchmark_avg, | |
x='Benchmark', | |
y='Average Score', | |
title='Average Performance by Benchmark', | |
color='Benchmark' | |
) | |
# Customize layout | |
fig.update_layout( | |
xaxis_title="Benchmark", | |
yaxis_title="Average Score", | |
font=dict(size=12) | |
) | |
return fig | |
# Leaderboard UI components | |
def create_leaderboard_ui(leaderboard, db_manager): | |
"""Create the leaderboard UI components. | |
Args: | |
leaderboard: Leaderboard instance | |
db_manager: Database manager instance | |
Returns: | |
gr.Blocks: Gradio Blocks component with leaderboard UI | |
""" | |
with gr.Blocks() as leaderboard_ui: | |
gr.Markdown("# Dynamic Highscores Leaderboard") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
tag_filter = gr.Dropdown( | |
choices=leaderboard.model_tags, | |
value="All", | |
label="Filter by Tag" | |
) | |
benchmark_filter = gr.Dropdown( | |
choices=[("all", "All Benchmarks")], | |
value="all", | |
label="Filter by Benchmark" | |
) | |
refresh_button = gr.Button("Refresh Leaderboard") | |
with gr.Column(scale=2): | |
chart_type = gr.Radio( | |
choices=["bar", "scatter"], | |
value="bar", | |
label="Chart Type" | |
) | |
view_type = gr.Radio( | |
choices=["Table", "Chart", "Dashboard"], | |
value="Table", | |
label="View Type" | |
) | |
# Table view | |
leaderboard_table = gr.Dataframe( | |
headers=["Model", "Benchmark", "Tag", "Score", "Completed"], | |
label="Leaderboard", | |
visible=True | |
) | |
# Chart view | |
with gr.Row(visible=False) as chart_view: | |
performance_chart = gr.Plot(label="Performance Chart") | |
# Dashboard view | |
with gr.Row(visible=False) as dashboard_view: | |
with gr.Column(scale=2): | |
dashboard_performance_chart = gr.Plot(label="Performance Comparison") | |
with gr.Column(scale=1): | |
with gr.Row(): | |
tag_distribution_chart = gr.Plot(label="Model Distribution") | |
with gr.Row(): | |
benchmark_comparison_chart = gr.Plot(label="Benchmark Comparison") | |
# Event handlers | |
def refresh_benchmarks(): | |
try: | |
benchmarks = db_manager.get_benchmarks() | |
# Format for dropdown | |
choices = [("all", "All Benchmarks")] | |
choices.extend([(str(b["id"]), b["name"]) for b in benchmarks]) | |
return gr.update(choices=choices) | |
except Exception as e: | |
print(f"Error refreshing benchmarks: {e}") | |
return gr.update(choices=[("all", "All Benchmarks")]) | |
def update_leaderboard(tag, benchmark_id, chart_type_val, view_type_val): | |
try: | |
# Get leaderboard data | |
if benchmark_id == "all": | |
benchmark_id = None | |
df = leaderboard.get_leaderboard_data(tag=tag, benchmark_id=benchmark_id) | |
# Format for display | |
display_df = leaderboard.format_leaderboard_for_display(df) | |
# Create charts | |
perf_chart = leaderboard.create_performance_chart(df, chart_type=chart_type_val) | |
tag_chart = leaderboard.create_tag_distribution_chart(df) | |
benchmark_chart = leaderboard.create_benchmark_comparison_chart(df) | |
# Update visibility based on view type | |
table_visible = view_type_val == "Table" | |
chart_visible = view_type_val == "Chart" | |
dashboard_visible = view_type_val == "Dashboard" | |
return ( | |
display_df, | |
perf_chart, | |
perf_chart, # Same chart for both views | |
tag_chart, | |
benchmark_chart, | |
gr.update(visible=table_visible), | |
gr.update(visible=chart_visible), | |
gr.update(visible=dashboard_visible) | |
) | |
except Exception as e: | |
print(f"Error updating leaderboard: {e}") | |
empty_df = pd.DataFrame(columns=['Model', 'Benchmark', 'Tag', 'Score', 'Completed']) | |
empty_chart = go.Figure() | |
empty_chart.update_layout(title="Error loading data") | |
return ( | |
empty_df, | |
empty_chart, | |
empty_chart, | |
empty_chart, | |
empty_chart, | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False) | |
) | |
# Connect event handlers | |
refresh_button.click( | |
fn=lambda tag, benchmark, chart_t, view_t: update_leaderboard(tag, benchmark, chart_t, view_t), | |
inputs=[tag_filter, benchmark_filter, chart_type, view_type], | |
outputs=[ | |
leaderboard_table, | |
performance_chart, | |
dashboard_performance_chart, | |
tag_distribution_chart, | |
benchmark_comparison_chart, | |
leaderboard_table, | |
chart_view, | |
dashboard_view | |
] | |
) | |
view_type.change( | |
fn=lambda view_t: ( | |
gr.update(visible=view_t == "Table"), | |
gr.update(visible=view_t == "Chart"), | |
gr.update(visible=view_t == "Dashboard") | |
), | |
inputs=[view_type], | |
outputs=[leaderboard_table, chart_view, dashboard_view] | |
) | |
# Initialize on load | |
leaderboard_ui.load( | |
fn=refresh_benchmarks, | |
inputs=[], | |
outputs=[benchmark_filter] | |
) | |
leaderboard_ui.load( | |
fn=lambda: update_leaderboard("All", "all", "bar", "Table"), | |
inputs=[], | |
outputs=[ | |
leaderboard_table, | |
performance_chart, | |
dashboard_performance_chart, | |
tag_distribution_chart, | |
benchmark_comparison_chart, | |
leaderboard_table, | |
chart_view, | |
dashboard_view | |
] | |
) | |
return leaderboard_ui |