Emmylahot12 commited on
Commit
9f1f9f0
·
verified ·
1 Parent(s): ba1b2e2

Delete train.py

Browse files
Files changed (1) hide show
  1. train.py +0 -54
train.py DELETED
@@ -1,54 +0,0 @@
1
- import pandas as pd
2
- import tensorflow as tf
3
- import numpy as np
4
- import librosa
5
- import os
6
-
7
- DATA_PATH = "data/transcriptions.csv"
8
- AUDIO_DIR = "data"
9
- MODEL_PATH = "model/clone_tts_model.h5"
10
- SAMPLE_RATE = 22050
11
- TEXT_MAX_LEN = 100 # Max characters per text
12
-
13
- # === Load and preprocess dataset ===
14
- def load_data():
15
- data = pd.read_csv(DATA_PATH)
16
- texts = data['text'].values
17
- audio_arrays = []
18
-
19
- for file in data['file']:
20
- audio_path = os.path.join(AUDIO_DIR, file)
21
- y, _ = librosa.load(audio_path, sr=SAMPLE_RATE)
22
- audio_arrays.append(y)
23
-
24
- max_audio_len = max(len(a) for a in audio_arrays)
25
- padded_audios = np.array([np.pad(a, (0, max_audio_len - len(a))) for a in audio_arrays])
26
-
27
- padded_texts = np.array([
28
- [ord(c) for c in text.ljust(TEXT_MAX_LEN)[:TEXT_MAX_LEN]] for text in texts
29
- ])
30
-
31
- return padded_texts, padded_audios, max_audio_len
32
-
33
- # === Build and train model ===
34
- def train_model():
35
- print("Loading and preparing data...")
36
- X, y, audio_len = load_data()
37
-
38
- print("Building model...")
39
- model = tf.keras.Sequential([
40
- tf.keras.layers.Input(shape=(TEXT_MAX_LEN,)),
41
- tf.keras.layers.Dense(256, activation='relu'),
42
- tf.keras.layers.Dense(audio_len)
43
- ])
44
-
45
- model.compile(optimizer='adam', loss='mse')
46
- print("Training...")
47
- model.fit(X, y, epochs=10, batch_size=4)
48
-
49
- os.makedirs(os.path.dirname(MODEL_PATH), exist_ok=True)
50
- model.save(MODEL_PATH)
51
- print(f"Model saved to {MODEL_PATH}")
52
-
53
- if __name__ == "__main__":
54
- train_model()