Emilichka
commited on
Commit
·
c4db5c9
1
Parent(s):
97d44ef
app_py
Browse files
app.py
CHANGED
@@ -7,7 +7,9 @@ from typing import Optional
|
|
7 |
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline
|
8 |
from diffusers import ControlNetModel
|
9 |
from peft import PeftModel, LoraConfig
|
10 |
-
from
|
|
|
|
|
11 |
import cv2
|
12 |
|
13 |
import torch
|
@@ -46,6 +48,7 @@ def infer(
|
|
46 |
width,
|
47 |
height,
|
48 |
lscale=0.0,
|
|
|
49 |
controlnet_enabled=False,
|
50 |
controlnet_strength=0.0,
|
51 |
controlnet_mode=None,
|
@@ -59,33 +62,32 @@ def infer(
|
|
59 |
num_inference_steps : Optional[int] = 20,
|
60 |
progress=gr.Progress(track_tqdm=True),
|
61 |
):
|
62 |
-
|
63 |
-
# raise ValueError("The submitted model is not supported")
|
64 |
generator = torch.Generator().manual_seed(seed)
|
65 |
|
66 |
if controlnet_enabled:
|
67 |
if not controlnet_image :
|
68 |
raise ValueError("controlnet_enabled set to True, but controlnet_image not given")
|
69 |
else:
|
70 |
-
controlnet_model = ControlNetModel.from_pretrained(CONTROL_MODE_MODEL.get(controlnet_mode))
|
71 |
if model_id == "SD-v1-5 + Lora" :
|
72 |
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model, torch_dtype=torch_dtype)
|
73 |
-
pipe.unet = PeftModel.from_pretrained("Emilichcka/diffusion_lora_funny_cat", "
|
74 |
-
pipe.text_encoder = PeftModel.from_pretrained("Emilichcka/diffusion_lora_funny_cat", "
|
75 |
|
76 |
else:
|
77 |
pipe=StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet_model, torch_dtype=torch_dtype)
|
78 |
else:
|
79 |
if model_id == "SD-v1-5 + Lora" :
|
80 |
pipe=StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",torch_dtype=torch_dtype)
|
81 |
-
pipe.unet = PeftModel.from_pretrained("Emilichcka/diffusion_lora_funny_cat", "
|
82 |
-
pipe.text_encoder = PeftModel.from_pretrained("Emilichcka/diffusion_lora_funny_cat", "
|
83 |
else:
|
84 |
pipe=StableDiffusionPipeline.from_pretrained(model_id)
|
85 |
|
86 |
if ip_adapter_enabled:
|
87 |
ip_adapter_scale = float(ip_adapter_scale)
|
88 |
-
pipe.load_ip_adapter("h94/IP-Adapter",subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
|
89 |
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
90 |
|
91 |
if controlnet_image!= None:
|
@@ -97,26 +99,27 @@ def infer(
|
|
97 |
controlnet_image = cv2.Canny(controlnet_image, low_threshold, high_threshold)
|
98 |
controlnet_image = controlnet_image[:, :, None]
|
99 |
controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2)
|
100 |
-
controlnet_image =
|
101 |
|
102 |
pipe = pipe.to(device)
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
120 |
|
121 |
return image, seed
|
122 |
|
@@ -138,6 +141,7 @@ default_model_id_choice = [
|
|
138 |
"stable-diffusion-v1-5/stable-diffusion-v1-5",
|
139 |
"CompVis/stable-diffusion-v1-4",
|
140 |
"SD-v1-5 + Lora",
|
|
|
141 |
|
142 |
]
|
143 |
|
@@ -155,7 +159,7 @@ with gr.Blocks(css=css) as demo:
|
|
155 |
model_id = gr.Dropdown(
|
156 |
label="Model Selection",
|
157 |
choices=default_model_id_choice,
|
158 |
-
value="
|
159 |
)
|
160 |
|
161 |
seed = gr.Slider(
|
@@ -180,6 +184,7 @@ with gr.Blocks(css=css) as demo:
|
|
180 |
result = gr.Image(label="Result", show_label=False)
|
181 |
|
182 |
with gr.Row():
|
|
|
183 |
controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False)
|
184 |
ip_adapter_enabled = gr.Checkbox(label="Enable IP-Adapter", value=False)
|
185 |
|
@@ -218,7 +223,6 @@ with gr.Blocks(css=css) as demo:
|
|
218 |
with gr.Accordion("Advanced Settings", open=False):
|
219 |
negative_prompt = gr.Text(
|
220 |
label="Negative prompt",
|
221 |
-
value="deformed, ugly,low res, worst quality, low quality",
|
222 |
max_lines=1,
|
223 |
placeholder="Enter a negative prompt",
|
224 |
)
|
@@ -238,7 +242,7 @@ with gr.Blocks(css=css) as demo:
|
|
238 |
minimum=256,
|
239 |
maximum=MAX_IMAGE_SIZE,
|
240 |
step=32,
|
241 |
-
value=
|
242 |
)
|
243 |
|
244 |
height = gr.Slider(
|
@@ -246,7 +250,7 @@ with gr.Blocks(css=css) as demo:
|
|
246 |
minimum=256,
|
247 |
maximum=MAX_IMAGE_SIZE,
|
248 |
step=32,
|
249 |
-
value=
|
250 |
)
|
251 |
|
252 |
with gr.Row():
|
@@ -255,7 +259,7 @@ with gr.Blocks(css=css) as demo:
|
|
255 |
minimum=0.0,
|
256 |
maximum=10.0,
|
257 |
step=0.1,
|
258 |
-
value=
|
259 |
)
|
260 |
|
261 |
num_inference_steps = gr.Slider(
|
@@ -263,7 +267,7 @@ with gr.Blocks(css=css) as demo:
|
|
263 |
minimum=1,
|
264 |
maximum=50,
|
265 |
step=1,
|
266 |
-
value=
|
267 |
)
|
268 |
|
269 |
gr.Examples(examples=examples, inputs=[prompt])
|
@@ -277,6 +281,7 @@ with gr.Blocks(css=css) as demo:
|
|
277 |
width,
|
278 |
height,
|
279 |
lora_scale,
|
|
|
280 |
controlnet_enabled,
|
281 |
controlNet_strength,
|
282 |
controlNet_mode,
|
|
|
7 |
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline
|
8 |
from diffusers import ControlNetModel
|
9 |
from peft import PeftModel, LoraConfig
|
10 |
+
from rembg import new_session, remove
|
11 |
+
|
12 |
+
from PIL import Image as PILImage
|
13 |
import cv2
|
14 |
|
15 |
import torch
|
|
|
48 |
width,
|
49 |
height,
|
50 |
lscale=0.0,
|
51 |
+
remove_background=False,
|
52 |
controlnet_enabled=False,
|
53 |
controlnet_strength=0.0,
|
54 |
controlnet_mode=None,
|
|
|
62 |
num_inference_steps : Optional[int] = 20,
|
63 |
progress=gr.Progress(track_tqdm=True),
|
64 |
):
|
65 |
+
|
|
|
66 |
generator = torch.Generator().manual_seed(seed)
|
67 |
|
68 |
if controlnet_enabled:
|
69 |
if not controlnet_image :
|
70 |
raise ValueError("controlnet_enabled set to True, but controlnet_image not given")
|
71 |
else:
|
72 |
+
controlnet_model = ControlNetModel.from_pretrained(CONTROL_MODE_MODEL.get(controlnet_mode),torch_dtype=torch_dtype)
|
73 |
if model_id == "SD-v1-5 + Lora" :
|
74 |
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model, torch_dtype=torch_dtype)
|
75 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet , "Emilichcka/diffusion_lora_funny_cat", subfolder="unet", torch_dtype=torch_dtype)
|
76 |
+
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder,"Emilichcka/diffusion_lora_funny_cat", subfolder="text_encoder", torch_dtype=torch_dtype)
|
77 |
|
78 |
else:
|
79 |
pipe=StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet_model, torch_dtype=torch_dtype)
|
80 |
else:
|
81 |
if model_id == "SD-v1-5 + Lora" :
|
82 |
pipe=StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",torch_dtype=torch_dtype)
|
83 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet , "Emilichcka/diffusion_lora_funny_cat", subfolder="unet", torch_dtype=torch_dtype)
|
84 |
+
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder,"Emilichcka/diffusion_lora_funny_cat", subfolder="text_encoder", torch_dtype=torch_dtype)
|
85 |
else:
|
86 |
pipe=StableDiffusionPipeline.from_pretrained(model_id)
|
87 |
|
88 |
if ip_adapter_enabled:
|
89 |
ip_adapter_scale = float(ip_adapter_scale)
|
90 |
+
pipe.load_ip_adapter("h94/IP-Adapter",subfolder="models", weight_name="ip-adapter-plus_sd15.bin", torch_dtype=torch_dtype)
|
91 |
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
92 |
|
93 |
if controlnet_image!= None:
|
|
|
99 |
controlnet_image = cv2.Canny(controlnet_image, low_threshold, high_threshold)
|
100 |
controlnet_image = controlnet_image[:, :, None]
|
101 |
controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2)
|
102 |
+
controlnet_image = PILImage.fromarray(controlnet_image)
|
103 |
|
104 |
pipe = pipe.to(device)
|
105 |
|
106 |
+
|
107 |
+
image = pipe(
|
108 |
+
prompt=prompt,
|
109 |
+
image=controlnet_image,
|
110 |
+
negative_prompt=negative_prompt,
|
111 |
+
guidance_scale=guidance_scale,
|
112 |
+
num_inference_steps=num_inference_steps,
|
113 |
+
width=width,
|
114 |
+
height=height,
|
115 |
+
generator=generator,
|
116 |
+
ross_attention_kwargs={"scale": float(lscale)},
|
117 |
+
controlnet_conditioning_scale=controlnet_strength,
|
118 |
+
ip_adapter_image=ip_adapter_image,
|
119 |
+
).images[0]
|
120 |
+
|
121 |
+
if remove_background:
|
122 |
+
image = remove(image)
|
123 |
|
124 |
return image, seed
|
125 |
|
|
|
141 |
"stable-diffusion-v1-5/stable-diffusion-v1-5",
|
142 |
"CompVis/stable-diffusion-v1-4",
|
143 |
"SD-v1-5 + Lora",
|
144 |
+
"nota-ai/bk-sdm-small",
|
145 |
|
146 |
]
|
147 |
|
|
|
159 |
model_id = gr.Dropdown(
|
160 |
label="Model Selection",
|
161 |
choices=default_model_id_choice,
|
162 |
+
value="SD-v1-5 + Lora",
|
163 |
)
|
164 |
|
165 |
seed = gr.Slider(
|
|
|
184 |
result = gr.Image(label="Result", show_label=False)
|
185 |
|
186 |
with gr.Row():
|
187 |
+
remove_background = gr.Checkbox(label="Remove Background", value=False)
|
188 |
controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False)
|
189 |
ip_adapter_enabled = gr.Checkbox(label="Enable IP-Adapter", value=False)
|
190 |
|
|
|
223 |
with gr.Accordion("Advanced Settings", open=False):
|
224 |
negative_prompt = gr.Text(
|
225 |
label="Negative prompt",
|
|
|
226 |
max_lines=1,
|
227 |
placeholder="Enter a negative prompt",
|
228 |
)
|
|
|
242 |
minimum=256,
|
243 |
maximum=MAX_IMAGE_SIZE,
|
244 |
step=32,
|
245 |
+
value=512, # Replace with defaults that work for your model
|
246 |
)
|
247 |
|
248 |
height = gr.Slider(
|
|
|
250 |
minimum=256,
|
251 |
maximum=MAX_IMAGE_SIZE,
|
252 |
step=32,
|
253 |
+
value=512, # Replace with defaults that work for your model
|
254 |
)
|
255 |
|
256 |
with gr.Row():
|
|
|
259 |
minimum=0.0,
|
260 |
maximum=10.0,
|
261 |
step=0.1,
|
262 |
+
value=10.0, # Replace with defaults that work for your model
|
263 |
)
|
264 |
|
265 |
num_inference_steps = gr.Slider(
|
|
|
267 |
minimum=1,
|
268 |
maximum=50,
|
269 |
step=1,
|
270 |
+
value=30, # Replace with defaults that work for your model
|
271 |
)
|
272 |
|
273 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
281 |
width,
|
282 |
height,
|
283 |
lora_scale,
|
284 |
+
remove_background,
|
285 |
controlnet_enabled,
|
286 |
controlNet_strength,
|
287 |
controlNet_mode,
|