|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from typing import Optional |
|
|
|
|
|
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline |
|
from diffusers import ControlNetModel |
|
from peft import PeftModel, LoraConfig |
|
from rembg import new_session, remove |
|
|
|
from PIL import Image as PILImage |
|
import cv2 |
|
|
|
import torch |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
if torch.cuda.is_available(): |
|
torch_dtype = torch.float16 |
|
else: |
|
torch_dtype = torch.float32 |
|
|
|
import os |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
|
|
CONTROL_MODE_MODEL = { |
|
"Canny Ege Detection" : "lllyasviel/control_v11p_sd15_canny", |
|
"Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p", |
|
"M-LSD Line detection" : "lllyasviel/control_v11p_sd15_mlsd", |
|
"HED edge detection (soft edge)" : "lllyasviel/control_sd15_hed", |
|
"Midas depth estimationn" : "lllyasviel/control_v11f1p_sd15_depth", |
|
"Surface Normal Estimation" : "lllyasviel/control_v11p_sd15_normalbae", |
|
"Scribble-Based Generation" : "lllyasviel/control_v11p_sd15_scribble", |
|
"Semantic segmentation" : "lllyasviel/control_v11p_sd15_seg", |
|
"OpenPose pose detection" : "lllyasviel/control_v11p_sd15_openpose", |
|
"Line Art Generation": "lllyasviel/control_v11p_sd15_lineart", |
|
} |
|
|
|
|
|
def infer( |
|
prompt: str, |
|
negative_prompt : str, |
|
width, |
|
height, |
|
lscale=0.0, |
|
remove_background=False, |
|
controlnet_enabled=False, |
|
controlnet_strength=0.0, |
|
controlnet_mode=None, |
|
controlnet_image=None, |
|
ip_adapter_enabled=False, |
|
ip_adapter_scale=0.0, |
|
ip_adapter_image=None, |
|
model_id: Optional[str] = "CompVis/stable-diffusion-v1-4", |
|
seed: Optional[int] = 42, |
|
guidance_scale : Optional[int] = 7, |
|
num_inference_steps : Optional[int] = 20, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
if controlnet_enabled: |
|
if not controlnet_image : |
|
raise ValueError("controlnet_enabled set to True, but controlnet_image not given") |
|
else: |
|
controlnet_model = ControlNetModel.from_pretrained(CONTROL_MODE_MODEL.get(controlnet_mode),torch_dtype=torch_dtype) |
|
if model_id == "SD-v1-5 + Lora" : |
|
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model, torch_dtype=torch_dtype) |
|
pipe.unet = PeftModel.from_pretrained(pipe.unet , "Emilichcka/diffusion_lora_funny_cat", subfolder="unet", torch_dtype=torch_dtype) |
|
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder,"Emilichcka/diffusion_lora_funny_cat", subfolder="text_encoder", torch_dtype=torch_dtype) |
|
|
|
else: |
|
pipe=StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet_model, torch_dtype=torch_dtype) |
|
else: |
|
if model_id == "SD-v1-5 + Lora" : |
|
pipe=StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",torch_dtype=torch_dtype) |
|
pipe.unet = PeftModel.from_pretrained(pipe.unet , "Emilichcka/diffusion_lora_funny_cat", subfolder="unet", torch_dtype=torch_dtype) |
|
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder,"Emilichcka/diffusion_lora_funny_cat", subfolder="text_encoder", torch_dtype=torch_dtype) |
|
else: |
|
pipe=StableDiffusionPipeline.from_pretrained(model_id) |
|
|
|
if ip_adapter_enabled: |
|
ip_adapter_scale = float(ip_adapter_scale) |
|
pipe.load_ip_adapter("h94/IP-Adapter",subfolder="models", weight_name="ip-adapter-plus_sd15.bin", torch_dtype=torch_dtype) |
|
pipe.set_ip_adapter_scale(ip_adapter_scale) |
|
|
|
if controlnet_image!= None: |
|
controlnet_image = np.array(controlnet_image) |
|
|
|
low_threshold = 100 |
|
high_threshold = 200 |
|
|
|
controlnet_image = cv2.Canny(controlnet_image, low_threshold, high_threshold) |
|
controlnet_image = controlnet_image[:, :, None] |
|
controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2) |
|
controlnet_image = PILImage.fromarray(controlnet_image) |
|
|
|
pipe = pipe.to(device) |
|
|
|
|
|
image = pipe( |
|
prompt=prompt, |
|
image=controlnet_image, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
cross_attention_kwargs={"scale": lscale}, |
|
controlnet_conditioning_scale=controlnet_strength, |
|
ip_adapter_image=ip_adapter_image, |
|
).images[0] |
|
|
|
if remove_background: |
|
image = remove(image) |
|
|
|
return image, seed |
|
|
|
|
|
examples = [ |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"An astronaut riding a green horse", |
|
"A delicious ceviche cheesecake slice", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 880px; |
|
} |
|
""" |
|
|
|
default_model_id_choice = [ |
|
"stable-diffusion-v1-5/stable-diffusion-v1-5", |
|
"CompVis/stable-diffusion-v1-4", |
|
"SD-v1-5 + Lora", |
|
"nota-ai/bk-sdm-small", |
|
|
|
] |
|
|
|
def update_controlnet_visibility(controlnet_enabled): |
|
return gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled) |
|
|
|
def update_ip_adapter_visibility(ip_adapter_enabled): |
|
return gr.update(visible=ip_adapter_enabled), gr.update(visible=ip_adapter_enabled) |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(" # Text-to-Image Gradio Template") |
|
|
|
with gr.Row(): |
|
model_id = gr.Dropdown( |
|
label="Model Selection", |
|
choices=default_model_id_choice, |
|
value="SD-v1-5 + Lora", |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=42, |
|
) |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0, variant="primary") |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Row(): |
|
remove_background = gr.Checkbox(label="Remove Background", value=False) |
|
controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False) |
|
ip_adapter_enabled = gr.Checkbox(label="Enable IP-Adapter", value=False) |
|
|
|
with gr.Accordion("ControlNet Settings", open=False): |
|
gr.Markdown("Enable ControlNet to use settings", visible=True) |
|
with gr.Row(): |
|
controlNet_strength = gr.Slider( |
|
label="ControlNet scale", |
|
minimum=0.0, maximum=1.0, step=0.05, value=0.75, |
|
visible=False, |
|
interactive=True, |
|
) |
|
|
|
controlNet_mode = gr.Dropdown( |
|
label="ControlNet Mode", |
|
choices=list(CONTROL_MODE_MODEL.keys()), |
|
visible=False, |
|
interactive=True, |
|
) |
|
|
|
controlNet_image = gr.Image(label="ControlNet Image", type="pil", |
|
interactive=True, visible=False) |
|
|
|
with gr.Accordion("IP-Adapter Settings", open=False): |
|
gr.Markdown("Enable IP-Adapter to use settings", visible=True) |
|
with gr.Row(): |
|
ip_adapter_scale = gr.Slider( |
|
label="IP-Adapter Scale", |
|
minimum=0.0, maximum=2.0, step=0.05, value=1.0, |
|
visible=False, |
|
interactive=True, |
|
) |
|
|
|
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil",interactive=True, visible=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
) |
|
|
|
lora_scale = gr.Slider( |
|
label="LoRA Scale", |
|
minimum=0.0, |
|
maximum=2.0, |
|
step=0.1, |
|
value=1.0, |
|
info="Adjust the influence of the LoRA weights", |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=10.0, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=30, |
|
) |
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
width, |
|
height, |
|
lora_scale, |
|
remove_background, |
|
controlnet_enabled, |
|
controlNet_strength, |
|
controlNet_mode, |
|
controlNet_image, |
|
ip_adapter_enabled, |
|
ip_adapter_scale, |
|
ip_adapter_image, |
|
model_id, |
|
seed, |
|
guidance_scale, |
|
num_inference_steps, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
controlnet_enabled.change( |
|
fn=update_controlnet_visibility, |
|
inputs=[controlnet_enabled], |
|
outputs=[controlNet_strength, controlNet_mode, controlNet_image], |
|
) |
|
|
|
ip_adapter_enabled.change( |
|
fn=update_ip_adapter_visibility, |
|
inputs=[ip_adapter_enabled], |
|
outputs=[ip_adapter_scale, ip_adapter_image], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |