Spaces:
Running
Running
import numpy as np | |
import streamlit as st | |
from PIL import Image | |
import urllib.request | |
import io | |
import tensorflow as tf | |
from utils import preprocess_image | |
# Initialize labels and model | |
labels = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash'] | |
model = tf.keras.models.load_model('classify_model.h5') | |
# Streamlit UI | |
st.markdown(''' | |
<div style="padding-bottom: 20px; padding-top: 20px; padding-left: 5px; padding-right: 5px"> | |
<center><h1>EcoIdentify (Test)</h1></center> | |
</div> | |
''', unsafe_allow_html=True) | |
st.markdown(''' | |
<div> | |
<center><h3>Please upload Waste Image to find its Category</h3></center> | |
</div> | |
''', unsafe_allow_html=True) | |
opt = st.selectbox( | |
"How do you want to upload the image for classification?", | |
("Please Select", "Upload image via link", "Upload image from device"), | |
) | |
image = None | |
if opt == 'Upload image from device': | |
file = st.file_uploader('Select', type=['jpg', 'png', 'jpeg']) | |
if file: | |
image = preprocess_image(file) | |
elif opt == 'Upload image via link': | |
img_url = st.text_input('Enter the Image Address') | |
if st.button('Submit'): | |
try: | |
response = urllib.request.urlopen(img_url) | |
image = preprocess_image(response) | |
except ValueError: | |
st.error("Please Enter a valid Image Address!") | |
try: | |
if image is not None: | |
st.image(image, width=256, caption='Uploaded Image') | |
if st.button('Predict'): | |
prediction = model.predict(image[np.newaxis, ...]) | |
print("---------------img-array---------------------") | |
print(image[np.newaxis, ...]) | |
print("------------summary------------------------") | |
print(model.summary()) | |
print("------------------------------------") | |
print(prediction) | |
st.info('Hey! The uploaded image has been classified as " {} waste " '.format(labels[np.argmax(prediction[0], axis=-1)])) | |
def message(img): | |
if img == 'paper' or 'cardboard' or 'metal' or 'glass': | |
return (" therefore your item is recyclable. Please refer to https://www.wm.com/us/en/drop-off-locations to find a drop-off location near you.") | |
elif img == 'plastic': | |
return ("therefore your item may have a chance of being recyclable.") | |
except ValueError: | |
print("Value Error") | |