import gradio as gr from ctransformers import AutoTokenizer, AutoModelForCausalLM import sys # model id model_id = "TheBloke/Mistral-7B-Instruct-v0.1-GGUF" model_file = "mistral-7b-instruct-v0.1.Q4_K_M.gguf" model_type = "mistral" # it's a quantization model quant_model = AutoModelForCausalLM.from_pretrained(model_id, model_file = model_file , model_type= model_type) def lechat_respond( message, history: list[tuple[str, str]], max_tokens, temperature, top_p, top_k ): # so mistral's instruct format . here i didn't use chat history cuase of computation 🙄 text = f"""<s>[INST] {message} [/INST]""" response = "" for next_token in quant_model(text, max_new_tokens = int(max_tokens), temperature = temperature, top_p = top_p, top_k = top_k, stream = True): response += next_token yield response #chat interface for le_chat mistral_chat = gr.ChatInterface( fn = lechat_respond, type = 'messages', # chatbot = gr.Chatbot(placeholder = "<h5>LLM running on cpu so it may take long time to respond to ur prompt !</h5>"), # textbox = gr.Textbox(placeholder= "Ask whatever", scale = 7, container = False), additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.8, step=0.1, label="Temperature"), gr.Slider(minimum=0.1,maximum=1.0,value=0.95,step=0.05,label="Top-p (nucleus sampling)"), gr.Slider(minimum = 40, maximum = 10000, value = 40, step = 10, label = "Top-k"), ], # theme= "ocean", # examples= [["Write a haiku about destruction of human's and the raise of AI"], ["Which species will rule the Earth in the future"]], # cache_examples = True ) if __name__ == "__main__": # print version for debugging in your HF Spaces logs print("Gradio v", gr.__version__, file=sys.stderr) mistral_chat.launch( server_name="0.0.0.0", # listen on all interfaces mcp_server=True, # <-- expose /gradio_api/mcp/sse for MCP clients 🔥 )