|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from transformers.audio_utils import ( |
|
amplitude_to_db, |
|
amplitude_to_db_batch, |
|
chroma_filter_bank, |
|
hertz_to_mel, |
|
mel_filter_bank, |
|
mel_to_hertz, |
|
power_to_db, |
|
power_to_db_batch, |
|
spectrogram, |
|
spectrogram_batch, |
|
window_function, |
|
) |
|
from transformers.testing_utils import is_librosa_available, require_librosa |
|
|
|
|
|
if is_librosa_available(): |
|
from librosa.filters import chroma |
|
|
|
|
|
class AudioUtilsFunctionTester(unittest.TestCase): |
|
|
|
_dataset = None |
|
|
|
def test_hertz_to_mel(self): |
|
self.assertEqual(hertz_to_mel(0.0), 0.0) |
|
self.assertAlmostEqual(hertz_to_mel(100), 150.48910241) |
|
|
|
inputs = np.array([100, 200]) |
|
expected = np.array([150.48910241, 283.22989816]) |
|
self.assertTrue(np.allclose(hertz_to_mel(inputs), expected)) |
|
|
|
self.assertEqual(hertz_to_mel(0.0, "slaney"), 0.0) |
|
self.assertEqual(hertz_to_mel(100, "slaney"), 1.5) |
|
|
|
inputs = np.array([60, 100, 200, 1000, 1001, 2000]) |
|
expected = np.array([0.9, 1.5, 3.0, 15.0, 15.01453781, 25.08188016]) |
|
self.assertTrue(np.allclose(hertz_to_mel(inputs, "slaney"), expected)) |
|
|
|
inputs = np.array([60, 100, 200, 1000, 1001, 2000]) |
|
expected = np.array([92.6824, 150.4899, 283.2313, 999.9907, 1000.6534, 1521.3674]) |
|
self.assertTrue(np.allclose(hertz_to_mel(inputs, "kaldi"), expected)) |
|
|
|
with pytest.raises(ValueError): |
|
hertz_to_mel(100, mel_scale=None) |
|
|
|
def test_mel_to_hertz(self): |
|
self.assertEqual(mel_to_hertz(0.0), 0.0) |
|
self.assertAlmostEqual(mel_to_hertz(150.48910241), 100) |
|
|
|
inputs = np.array([150.48910241, 283.22989816]) |
|
expected = np.array([100, 200]) |
|
self.assertTrue(np.allclose(mel_to_hertz(inputs), expected)) |
|
|
|
self.assertEqual(mel_to_hertz(0.0, "slaney"), 0.0) |
|
self.assertEqual(mel_to_hertz(1.5, "slaney"), 100) |
|
|
|
inputs = np.array([0.9, 1.5, 3.0, 15.0, 15.01453781, 25.08188016]) |
|
expected = np.array([60, 100, 200, 1000, 1001, 2000]) |
|
self.assertTrue(np.allclose(mel_to_hertz(inputs, "slaney"), expected)) |
|
|
|
inputs = np.array([92.6824, 150.4899, 283.2313, 999.9907, 1000.6534, 1521.3674]) |
|
expected = np.array([60, 100, 200, 1000, 1001, 2000]) |
|
self.assertTrue(np.allclose(mel_to_hertz(inputs, "kaldi"), expected)) |
|
|
|
with pytest.raises(ValueError): |
|
mel_to_hertz(100, mel_scale=None) |
|
|
|
def test_mel_filter_bank_shape(self): |
|
mel_filters = mel_filter_bank( |
|
num_frequency_bins=513, |
|
num_mel_filters=13, |
|
min_frequency=100, |
|
max_frequency=4000, |
|
sampling_rate=16000, |
|
norm=None, |
|
mel_scale="htk", |
|
) |
|
self.assertEqual(mel_filters.shape, (513, 13)) |
|
|
|
mel_filters = mel_filter_bank( |
|
num_frequency_bins=513, |
|
num_mel_filters=13, |
|
min_frequency=100, |
|
max_frequency=4000, |
|
sampling_rate=16000, |
|
norm="slaney", |
|
mel_scale="slaney", |
|
) |
|
self.assertEqual(mel_filters.shape, (513, 13)) |
|
|
|
mel_filters = mel_filter_bank( |
|
num_frequency_bins=513, |
|
num_mel_filters=13, |
|
min_frequency=100, |
|
max_frequency=4000, |
|
sampling_rate=16000, |
|
norm="slaney", |
|
mel_scale="slaney", |
|
triangularize_in_mel_space=True, |
|
) |
|
self.assertEqual(mel_filters.shape, (513, 13)) |
|
|
|
def test_mel_filter_bank_htk(self): |
|
mel_filters = mel_filter_bank( |
|
num_frequency_bins=16, |
|
num_mel_filters=4, |
|
min_frequency=0, |
|
max_frequency=2000, |
|
sampling_rate=4000, |
|
norm=None, |
|
mel_scale="htk", |
|
) |
|
|
|
expected = np.array([ |
|
[0.0 , 0.0 , 0.0 , 0.0 ], |
|
[0.61454786, 0.0 , 0.0 , 0.0 ], |
|
[0.82511046, 0.17488954, 0.0 , 0.0 ], |
|
[0.35597035, 0.64402965, 0.0 , 0.0 ], |
|
[0.0 , 0.91360726, 0.08639274, 0.0 ], |
|
[0.0 , 0.55547007, 0.44452993, 0.0 ], |
|
[0.0 , 0.19733289, 0.80266711, 0.0 ], |
|
[0.0 , 0.0 , 0.87724349, 0.12275651], |
|
[0.0 , 0.0 , 0.6038449 , 0.3961551 ], |
|
[0.0 , 0.0 , 0.33044631, 0.66955369], |
|
[0.0 , 0.0 , 0.05704771, 0.94295229], |
|
[0.0 , 0.0 , 0.0 , 0.83483975], |
|
[0.0 , 0.0 , 0.0 , 0.62612982], |
|
[0.0 , 0.0 , 0.0 , 0.41741988], |
|
[0.0 , 0.0 , 0.0 , 0.20870994], |
|
[0.0 , 0.0 , 0.0 , 0.0 ] |
|
]) |
|
|
|
self.assertTrue(np.allclose(mel_filters, expected)) |
|
|
|
def test_mel_filter_bank_slaney(self): |
|
mel_filters = mel_filter_bank( |
|
num_frequency_bins=16, |
|
num_mel_filters=4, |
|
min_frequency=0, |
|
max_frequency=2000, |
|
sampling_rate=4000, |
|
norm=None, |
|
mel_scale="slaney", |
|
) |
|
|
|
expected = np.array([ |
|
[0.0 , 0.0 , 0.0 , 0.0 ], |
|
[0.39869419, 0.0 , 0.0 , 0.0 ], |
|
[0.79738839, 0.0 , 0.0 , 0.0 ], |
|
[0.80391742, 0.19608258, 0.0 , 0.0 ], |
|
[0.40522322, 0.59477678, 0.0 , 0.0 ], |
|
[0.00652903, 0.99347097, 0.0 , 0.0 ], |
|
[0.0 , 0.60796161, 0.39203839, 0.0 ], |
|
[0.0 , 0.20939631, 0.79060369, 0.0 ], |
|
[0.0 , 0.0 , 0.84685344, 0.15314656], |
|
[0.0 , 0.0 , 0.52418477, 0.47581523], |
|
[0.0 , 0.0 , 0.2015161 , 0.7984839 ], |
|
[0.0 , 0.0 , 0.0 , 0.9141874 ], |
|
[0.0 , 0.0 , 0.0 , 0.68564055], |
|
[0.0 , 0.0 , 0.0 , 0.4570937 ], |
|
[0.0 , 0.0 , 0.0 , 0.22854685], |
|
[0.0 , 0.0 , 0.0 , 0.0 ] |
|
]) |
|
|
|
self.assertTrue(np.allclose(mel_filters, expected)) |
|
|
|
def test_mel_filter_bank_kaldi(self): |
|
mel_filters = mel_filter_bank( |
|
num_frequency_bins=16, |
|
num_mel_filters=4, |
|
min_frequency=0, |
|
max_frequency=2000, |
|
sampling_rate=4000, |
|
norm=None, |
|
mel_scale="kaldi", |
|
triangularize_in_mel_space=True, |
|
) |
|
|
|
|
|
|
|
expected = np.array( |
|
[ |
|
[0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000], |
|
[0.6457883715629578, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000], |
|
[0.8044781088829041, 0.1955219060182571, 0.0000000000000000, 0.0000000000000000], |
|
[0.3258901536464691, 0.6741098165512085, 0.0000000000000000, 0.0000000000000000], |
|
[0.0000000000000000, 0.9021250009536743, 0.0978749766945839, 0.0000000000000000], |
|
[0.0000000000000000, 0.5219038724899292, 0.4780961275100708, 0.0000000000000000], |
|
[0.0000000000000000, 0.1771058291196823, 0.8228941559791565, 0.0000000000000000], |
|
[0.0000000000000000, 0.0000000000000000, 0.8616894483566284, 0.1383105516433716], |
|
[0.0000000000000000, 0.0000000000000000, 0.5710380673408508, 0.4289619624614716], |
|
[0.0000000000000000, 0.0000000000000000, 0.3015440106391907, 0.6984559893608093], |
|
[0.0000000000000000, 0.0000000000000000, 0.0503356307744980, 0.9496643543243408], |
|
[0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.8150880336761475], |
|
[0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.5938932299613953], |
|
[0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.3851676583290100], |
|
[0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.1875794380903244], |
|
], |
|
dtype=np.float64, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
expected = np.pad(expected, ((0, 1), (0, 0))) |
|
|
|
self.assertTrue(np.allclose(mel_filters, expected)) |
|
|
|
def test_mel_filter_bank_slaney_norm(self): |
|
mel_filters = mel_filter_bank( |
|
num_frequency_bins=16, |
|
num_mel_filters=4, |
|
min_frequency=0, |
|
max_frequency=2000, |
|
sampling_rate=4000, |
|
norm="slaney", |
|
mel_scale="slaney", |
|
) |
|
|
|
expected = np.array([ |
|
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], |
|
[1.19217795e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], |
|
[2.38435591e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], |
|
[2.40387905e-03, 5.86232616e-04, 0.00000000e+00, 0.00000000e+00], |
|
[1.21170110e-03, 1.77821783e-03, 0.00000000e+00, 0.00000000e+00], |
|
[1.95231437e-05, 2.97020305e-03, 0.00000000e+00, 0.00000000e+00], |
|
[0.00000000e+00, 1.81763684e-03, 1.04857612e-03, 0.00000000e+00], |
|
[0.00000000e+00, 6.26036972e-04, 2.11460963e-03, 0.00000000e+00], |
|
[0.00000000e+00, 0.00000000e+00, 2.26505954e-03, 3.07332945e-04], |
|
[0.00000000e+00, 0.00000000e+00, 1.40202503e-03, 9.54861093e-04], |
|
[0.00000000e+00, 0.00000000e+00, 5.38990521e-04, 1.60238924e-03], |
|
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.83458185e-03], |
|
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.37593638e-03], |
|
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 9.17290923e-04], |
|
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.58645462e-04], |
|
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00] |
|
]) |
|
|
|
self.assertTrue(np.allclose(mel_filters, expected)) |
|
|
|
def test_window_function(self): |
|
window = window_function(16, "hann") |
|
self.assertEqual(len(window), 16) |
|
|
|
|
|
expected = np.array([ |
|
0.0, 0.03806023, 0.14644661, 0.30865828, 0.5, 0.69134172, 0.85355339, 0.96193977, |
|
1.0, 0.96193977, 0.85355339, 0.69134172, 0.5, 0.30865828, 0.14644661, 0.03806023, |
|
]) |
|
|
|
self.assertTrue(np.allclose(window, expected)) |
|
|
|
def _load_datasamples(self, num_samples): |
|
from datasets import load_dataset |
|
|
|
if self._dataset is None: |
|
self._dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") |
|
speech_samples = self._dataset.sort("id").select(range(num_samples))[:num_samples]["audio"] |
|
return [x["array"] for x in speech_samples] |
|
|
|
def test_spectrogram_impulse(self): |
|
waveform = np.zeros(40) |
|
waveform[9] = 1.0 |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(12, "hann", frame_length=16), |
|
frame_length=16, |
|
hop_length=4, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=True, |
|
) |
|
self.assertEqual(spec.shape, (9, 11)) |
|
|
|
expected = np.array([[0.0, 0.0669873, 0.9330127, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]) |
|
self.assertTrue(np.allclose(spec, expected)) |
|
|
|
def test_spectrogram_batch_impulse(self): |
|
waveform1 = np.zeros(40) |
|
waveform1[9] = 1.0 |
|
|
|
waveform2 = np.zeros(28) |
|
waveform2[12] = 3.0 |
|
|
|
waveform3 = np.zeros(51) |
|
waveform3[26] = 4.5 |
|
|
|
waveform_list = [waveform1, waveform2, waveform3] |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(12, "hann", frame_length=16), |
|
frame_length=16, |
|
hop_length=4, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=True, |
|
) |
|
|
|
self.assertEqual(spec_list[0].shape, (9, 11)) |
|
self.assertEqual(spec_list[1].shape, (9, 8)) |
|
self.assertEqual(spec_list[2].shape, (9, 13)) |
|
|
|
expected1 = np.array([[0.0, 0.0669873, 0.9330127, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]) |
|
expected2 = np.array([[0.0, 0.0, 0.75, 3.0, 0.75, 0.0, 0.0, 0.0]]) |
|
expected3 = np.array([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.375, 3.375, 0.0, 0.0, 0.0, 0.0, 0.0]]) |
|
|
|
self.assertTrue(np.allclose(spec_list[0], expected1)) |
|
self.assertTrue(np.allclose(spec_list[1], expected2)) |
|
self.assertTrue(np.allclose(spec_list[2], expected3)) |
|
|
|
def test_spectrogram_integration_test(self): |
|
waveform = self._load_datasamples(1)[0] |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(400, "hann", frame_length=512), |
|
frame_length=512, |
|
hop_length=128, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=True, |
|
) |
|
self.assertEqual(spec.shape, (257, 732)) |
|
|
|
|
|
expected = np.array([ |
|
0.02464888, 0.04648664, 0.05872392, 0.02311783, 0.0327175 , |
|
0.02433643, 0.01198814, 0.02055709, 0.01559287, 0.01394357, |
|
0.01299037, 0.01728045, 0.0254554 , 0.02486533, 0.02011792, |
|
0.01755333, 0.02100457, 0.02337024, 0.01436963, 0.01464558, |
|
0.0211017 , 0.0193489 , 0.01272165, 0.01858462, 0.03722598, |
|
0.0456542 , 0.03281558, 0.00620586, 0.02226466, 0.03618042, |
|
0.03508182, 0.02271432, 0.01051649, 0.01225771, 0.02315293, |
|
0.02331886, 0.01417785, 0.0106844 , 0.01791214, 0.017177 , |
|
0.02125114, 0.05028201, 0.06830665, 0.05216664, 0.01963666, |
|
0.06941418, 0.11513043, 0.12257859, 0.10948435, 0.08568069, |
|
0.05509328, 0.05047818, 0.047112 , 0.05060737, 0.02982424, |
|
0.02803827, 0.02933729, 0.01760491, 0.00587815, 0.02117637, |
|
0.0293578 , 0.03452379, 0.02194803, 0.01676056, |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec[:64, 400], expected)) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(400, "hann"), |
|
frame_length=400, |
|
hop_length=128, |
|
fft_length=512, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=True, |
|
) |
|
self.assertEqual(spec.shape, (257, 732)) |
|
self.assertTrue(np.allclose(spec[:64, 400], expected)) |
|
|
|
mel_filters = mel_filter_bank( |
|
num_frequency_bins=257, |
|
num_mel_filters=400, |
|
min_frequency=20, |
|
max_frequency=8000, |
|
sampling_rate=16000, |
|
norm=None, |
|
mel_scale="kaldi", |
|
triangularize_in_mel_space=True, |
|
) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(400, "povey", periodic=False), |
|
frame_length=400, |
|
hop_length=160, |
|
fft_length=512, |
|
power=2.0, |
|
center=False, |
|
pad_mode="reflect", |
|
onesided=True, |
|
preemphasis=0.97, |
|
mel_filters=mel_filters, |
|
log_mel="log", |
|
mel_floor=1.1920928955078125e-07, |
|
remove_dc_offset=True, |
|
) |
|
self.assertEqual(spec.shape, (400, 584)) |
|
|
|
|
|
expected = np.array([-15.94238515, -8.20712299, -8.22704352, -15.94238515, |
|
-15.94238515, -15.94238515, -15.94238515, -15.94238515, |
|
-6.52463769, -7.73677889, -15.94238515, -15.94238515, |
|
-15.94238515, -15.94238515, -4.18650018, -3.37195286, |
|
-15.94238515, -15.94238515, -15.94238515, -15.94238515, |
|
-4.70190154, -2.4217066 , -15.94238515, -15.94238515, |
|
-15.94238515, -15.94238515, -5.62755239, -3.53385194, |
|
-15.94238515, -15.94238515, -15.94238515, -15.94238515, |
|
-9.43303023, -8.77480925, -15.94238515, -15.94238515, |
|
-15.94238515, -15.94238515, -4.2951092 , -5.51585994, |
|
-15.94238515, -15.94238515, -15.94238515, -4.40151721, |
|
-3.95228878, -15.94238515, -15.94238515, -15.94238515, |
|
-6.10365415, -4.59494697, -15.94238515, -15.94238515, |
|
-15.94238515, -8.10727767, -6.2585298 , -15.94238515, |
|
-15.94238515, -15.94238515, -5.60161702, -4.47217004, |
|
-15.94238515, -15.94238515, -15.94238515, -5.91641988] |
|
) |
|
|
|
self.assertTrue(np.allclose(spec[:64, 400], expected, atol=1e-5)) |
|
|
|
def test_spectrogram_batch_integration_test(self): |
|
waveform_list = self._load_datasamples(3) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(400, "hann", frame_length=512), |
|
frame_length=512, |
|
hop_length=128, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=True, |
|
) |
|
self.assertEqual(spec_list[0].shape, (257, 732)) |
|
self.assertEqual(spec_list[1].shape, (257, 602)) |
|
self.assertEqual(spec_list[2].shape, (257, 1561)) |
|
|
|
|
|
expected1 = np.array([ |
|
0.02464888, 0.04648664, 0.05872392, 0.02311783, 0.0327175 , |
|
0.02433643, 0.01198814, 0.02055709, 0.01559287, 0.01394357, |
|
0.01299037, 0.01728045, 0.0254554 , 0.02486533, 0.02011792, |
|
0.01755333, 0.02100457, 0.02337024, 0.01436963, 0.01464558, |
|
0.0211017 , 0.0193489 , 0.01272165, 0.01858462, 0.03722598, |
|
0.0456542 , 0.03281558, 0.00620586, 0.02226466, 0.03618042, |
|
0.03508182, 0.02271432, 0.01051649, 0.01225771, 0.02315293, |
|
0.02331886, 0.01417785, 0.0106844 , 0.01791214, 0.017177 , |
|
0.02125114, 0.05028201, 0.06830665, 0.05216664, 0.01963666, |
|
0.06941418, 0.11513043, 0.12257859, 0.10948435, 0.08568069, |
|
0.05509328, 0.05047818, 0.047112 , 0.05060737, 0.02982424, |
|
0.02803827, 0.02933729, 0.01760491, 0.00587815, 0.02117637, |
|
0.0293578 , 0.03452379, 0.02194803, 0.01676056, |
|
]) |
|
expected2 = np.array([ |
|
7.61983171e-02, 1.45338190e-01, 2.63903728e+00, 7.74429535e+00, |
|
9.61932980e+00, 5.40767686e+00, 1.08924884e+00, 3.40908262e+00, |
|
3.59484250e+00, 1.68451077e+00, 5.88405873e-01, 1.17042530e+00, |
|
9.94803324e-01, 3.53757065e-01, 5.47699239e-01, 9.48368581e-01, |
|
7.17770457e-01, 2.09396633e-01, 1.77574463e-01, 2.35644731e-01, |
|
1.31535991e-01, 1.53539552e-02, 4.34416305e-02, 5.32897267e-02, |
|
4.03567305e-02, 1.41842226e-02, 2.90514538e-02, 3.36549485e-02, |
|
1.53516624e-02, 2.37464225e-02, 4.60092464e-02, 4.05769324e-02, |
|
4.82633401e-03, 4.12675364e-02, 7.13859796e-02, 6.16866566e-02, |
|
2.55657822e-02, 1.68923281e-02, 1.91299946e-02, 1.60033798e-02, |
|
1.33405095e-02, 1.52065457e-02, 1.21833352e-02, 2.25786382e-03, |
|
6.15358376e-03, 1.07647616e-02, 1.23051018e-02, 6.75289378e-03, |
|
2.71127435e-03, 1.06515263e-02, 1.18463583e-02, 7.14347935e-03, |
|
1.87912782e-03, 4.44236027e-03, 5.19630243e-03, 2.46666998e-03, |
|
1.01598645e-03, 1.21589237e-03, 1.29095500e-03, 1.07447628e-03, |
|
1.40218156e-03, 3.65402623e-03, 4.00592755e-03, 4.20001841e-03 |
|
]) |
|
expected3 = np.array([ |
|
0.07805249, 0.34305022, 0.55617084, 1.22475182, 1.17040678, |
|
0.51540532, 0.23570016, 0.06630775, 0.09017777, 0.07693192, |
|
0.0333643 , 0.04873054, 0.04668559, 0.02384041, 0.02780435, |
|
0.0289717 , 0.01704903, 0.0201644 , 0.01700376, 0.02176975, |
|
0.02042491, 0.00732129, 0.00326042, 0.00245065, 0.00510645, |
|
0.00681892, 0.00739329, 0.00551437, 0.0070674 , 0.00630015, |
|
0.00379566, 0.0060098 , 0.00311543, 0.00902284, 0.01171038, |
|
0.01202166, 0.01759194, 0.01652899, 0.01201872, 0.01295351, |
|
0.00756432, 0.01415318, 0.02349972, 0.02296833, 0.02429341, |
|
0.02447459, 0.01835044, 0.01437871, 0.02262246, 0.02972324, |
|
0.03392252, 0.03037546, 0.01116927, 0.01555062, 0.02833379, |
|
0.02294212, 0.02069847, 0.02496927, 0.02273526, 0.01341643, |
|
0.00805407, 0.00624943, 0.01076262, 0.01876003 |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec_list[0][:64, 400], expected1)) |
|
self.assertTrue(np.allclose(spec_list[1][:64, 400], expected2)) |
|
self.assertTrue(np.allclose(spec_list[2][:64, 400], expected3)) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(400, "hann"), |
|
frame_length=400, |
|
hop_length=128, |
|
fft_length=512, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=True, |
|
) |
|
self.assertEqual(spec_list[0].shape, (257, 732)) |
|
self.assertEqual(spec_list[1].shape, (257, 602)) |
|
self.assertEqual(spec_list[2].shape, (257, 1561)) |
|
self.assertTrue(np.allclose(spec_list[0][:64, 400], expected1)) |
|
self.assertTrue(np.allclose(spec_list[1][:64, 400], expected2)) |
|
self.assertTrue(np.allclose(spec_list[2][:64, 400], expected3)) |
|
|
|
mel_filters = mel_filter_bank( |
|
num_frequency_bins=257, |
|
num_mel_filters=400, |
|
min_frequency=20, |
|
max_frequency=8000, |
|
sampling_rate=16000, |
|
norm=None, |
|
mel_scale="kaldi", |
|
triangularize_in_mel_space=True, |
|
) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(400, "povey", periodic=False), |
|
frame_length=400, |
|
hop_length=160, |
|
fft_length=512, |
|
power=2.0, |
|
center=False, |
|
pad_mode="reflect", |
|
onesided=True, |
|
preemphasis=0.97, |
|
mel_filters=mel_filters, |
|
log_mel="log", |
|
mel_floor=1.1920928955078125e-07, |
|
remove_dc_offset=True, |
|
) |
|
self.assertEqual(spec_list[0].shape, (400, 584)) |
|
self.assertEqual(spec_list[1].shape, (400, 480)) |
|
self.assertEqual(spec_list[2].shape, (400, 1247)) |
|
|
|
|
|
expected1 = np.array([-15.94238515, -8.20712299, -8.22704352, -15.94238515, |
|
-15.94238515, -15.94238515, -15.94238515, -15.94238515, |
|
-6.52463769, -7.73677889, -15.94238515, -15.94238515, |
|
-15.94238515, -15.94238515, -4.18650018, -3.37195286, |
|
-15.94238515, -15.94238515, -15.94238515, -15.94238515, |
|
-4.70190154, -2.4217066 , -15.94238515, -15.94238515, |
|
-15.94238515, -15.94238515, -5.62755239, -3.53385194, |
|
-15.94238515, -15.94238515, -15.94238515, -15.94238515, |
|
-9.43303023, -8.77480925, -15.94238515, -15.94238515, |
|
-15.94238515, -15.94238515, -4.2951092 , -5.51585994, |
|
-15.94238515, -15.94238515, -15.94238515, -4.40151721, |
|
-3.95228878, -15.94238515, -15.94238515, -15.94238515, |
|
-6.10365415, -4.59494697, -15.94238515, -15.94238515, |
|
-15.94238515, -8.10727767, -6.2585298 , -15.94238515, |
|
-15.94238515, -15.94238515, -5.60161702, -4.47217004, |
|
-15.94238515, -15.94238515, -15.94238515, -5.91641988] |
|
) |
|
expected2 = np.array([-15.942385, -8.531508, -8.551396, -15.942385, -15.942385, |
|
-15.942385, -15.942385, -15.942385, -5.626043, -6.8381968, |
|
-15.942385, -15.942385, -15.942385, -15.942385, -3.3122184, |
|
-2.49764, -15.942385, -15.942385, -15.942385, -15.942385, |
|
-3.625868, -1.3457257, -15.942385, -15.942385, -15.942385, |
|
-15.942385, -4.2223063, -2.1285915, -15.942385, -15.942385, |
|
-15.942385, -15.942385, -8.611152, -7.952894, -15.942385, |
|
-15.942385, -15.942385, -15.942385, -2.7585578, -3.9793255, |
|
-15.942385, -15.942385, -15.942385, -2.5377562, -2.0885658, |
|
-15.942385, -15.942385, -15.942385, -3.8310733, -2.322393, |
|
-15.942385, -15.942385, -15.942385, -7.674944, -5.8261633, |
|
-15.942385, -15.942385, -15.942385, -3.5960004, -2.4665844, |
|
-15.942385, -15.942385, -15.942385, -1.7905309] |
|
) |
|
expected3 = np.array([-15.942385, -13.406995, -13.426883, -15.942385, -15.942385, |
|
-15.942385, -15.942385, -15.942385, -15.942385, -15.942385, |
|
-15.942385, -15.942385, -15.942385, -15.942385, -13.493383, |
|
-12.678805, -15.942385, -15.942385, -15.942385, -15.942385, |
|
-14.809377, -12.529235, -15.942385, -15.942385, -15.942385, |
|
-15.942385, -13.838827, -11.745112, -15.942385, -15.942385, |
|
-15.942385, -15.942385, -13.9336405, -13.275384, -15.942385, |
|
-15.942385, -15.942385, -15.942385, -13.043786, -14.264554, |
|
-15.942385, -15.942385, -15.942385, -13.060181, -12.610991, |
|
-15.942385, -15.942385, -15.942385, -14.152064, -12.643384, |
|
-15.942385, -15.942385, -15.942385, -14.48317, -12.634389, |
|
-15.942385, -15.942385, -15.942385, -14.627316, -13.4979, |
|
-15.942385, -15.942385, -15.942385, -12.6279955] |
|
) |
|
|
|
self.assertTrue(np.allclose(spec_list[0][:64, 400], expected1, atol=1e-5)) |
|
self.assertTrue(np.allclose(spec_list[1][:64, 400], expected2, atol=1e-5)) |
|
self.assertTrue(np.allclose(spec_list[2][:64, 400], expected3, atol=1e-5)) |
|
|
|
def test_spectrogram_center_padding(self): |
|
waveform = self._load_datasamples(1)[0] |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(512, "hann"), |
|
frame_length=512, |
|
hop_length=128, |
|
center=True, |
|
pad_mode="reflect", |
|
) |
|
self.assertEqual(spec.shape, (257, 732)) |
|
|
|
|
|
expected = np.array([ |
|
0.1287945 , 0.12792738, 0.08311573, 0.03155122, 0.02470202, |
|
0.00727857, 0.00910694, 0.00686163, 0.01238981, 0.01473668, |
|
0.00336144, 0.00370314, 0.00600871, 0.01120164, 0.01942998, |
|
0.03132008, 0.0232842 , 0.01124642, 0.02754783, 0.02423725, |
|
0.00147893, 0.00038027, 0.00112299, 0.00596233, 0.00571529, |
|
0.02084235, 0.0231855 , 0.00810006, 0.01837943, 0.00651339, |
|
0.00093931, 0.00067426, 0.01058399, 0.01270507, 0.00151734, |
|
0.00331913, 0.00302416, 0.01081792, 0.00754549, 0.00148963, |
|
0.00111943, 0.00152573, 0.00608017, 0.01749986, 0.01205949, |
|
0.0143082 , 0.01910573, 0.00413786, 0.03916619, 0.09873404, |
|
0.08302026, 0.02673891, 0.00401255, 0.01397392, 0.00751862, |
|
0.01024884, 0.01544606, 0.00638907, 0.00623633, 0.0085103 , |
|
0.00217659, 0.00276204, 0.00260835, 0.00299299, |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec[:64, 0], expected)) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(512, "hann"), |
|
frame_length=512, |
|
hop_length=128, |
|
center=True, |
|
pad_mode="constant", |
|
) |
|
self.assertEqual(spec.shape, (257, 732)) |
|
|
|
|
|
expected = np.array([ |
|
0.06558744, 0.06889656, 0.06263352, 0.04264418, 0.03404115, |
|
0.03244197, 0.02279134, 0.01646339, 0.01452216, 0.00826055, |
|
0.00062093, 0.0031821 , 0.00419456, 0.00689327, 0.01106367, |
|
0.01712119, 0.01721762, 0.00977533, 0.01606626, 0.02275621, |
|
0.01727687, 0.00992739, 0.01217688, 0.01049927, 0.01022947, |
|
0.01302475, 0.01166873, 0.01081812, 0.01057327, 0.00767912, |
|
0.00429567, 0.00089625, 0.00654583, 0.00912084, 0.00700984, |
|
0.00225026, 0.00290545, 0.00667712, 0.00730663, 0.00410813, |
|
0.00073102, 0.00219296, 0.00527618, 0.00996585, 0.01123781, |
|
0.00872816, 0.01165121, 0.02047945, 0.03681747, 0.0514379 , |
|
0.05137928, 0.03960042, 0.02821562, 0.01813349, 0.01201322, |
|
0.01260964, 0.00900654, 0.00207905, 0.00456714, 0.00850599, |
|
0.00788239, 0.00664407, 0.00824227, 0.00628301, |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec[:64, 0], expected)) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(512, "hann"), |
|
frame_length=512, |
|
hop_length=128, |
|
center=False, |
|
) |
|
self.assertEqual(spec.shape, (257, 728)) |
|
|
|
|
|
expected = np.array([ |
|
0.00250445, 0.02161521, 0.06232229, 0.04339567, 0.00937727, |
|
0.01080616, 0.00248685, 0.0095264 , 0.00727476, 0.0079152 , |
|
0.00839946, 0.00254932, 0.00716622, 0.005559 , 0.00272623, |
|
0.00581774, 0.01896395, 0.01829788, 0.01020514, 0.01632692, |
|
0.00870888, 0.02065827, 0.0136022 , 0.0132382 , 0.011827 , |
|
0.00194505, 0.0189979 , 0.026874 , 0.02194014, 0.01923883, |
|
0.01621437, 0.00661967, 0.00289517, 0.00470257, 0.00957801, |
|
0.00191455, 0.00431664, 0.00544359, 0.01126213, 0.00785778, |
|
0.00423469, 0.01322504, 0.02226548, 0.02318576, 0.03428908, |
|
0.03648811, 0.0202938 , 0.011902 , 0.03226198, 0.06347476, |
|
0.01306318, 0.05308729, 0.05474771, 0.03127991, 0.00998512, |
|
0.01449977, 0.01272741, 0.00868176, 0.00850386, 0.00313876, |
|
0.00811857, 0.00538216, 0.00685749, 0.00535275, |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec[:64, 0], expected)) |
|
|
|
def test_spectrogram_batch_center_padding(self): |
|
waveform_list = self._load_datasamples(3) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(512, "hann"), |
|
frame_length=512, |
|
hop_length=128, |
|
center=True, |
|
pad_mode="reflect", |
|
) |
|
self.assertEqual(spec_list[0].shape, (257, 732)) |
|
self.assertEqual(spec_list[1].shape, (257, 602)) |
|
self.assertEqual(spec_list[2].shape, (257, 1561)) |
|
|
|
|
|
expected1 = np.array([ |
|
0.1287945 , 0.12792738, 0.08311573, 0.03155122, 0.02470202, |
|
0.00727857, 0.00910694, 0.00686163, 0.01238981, 0.01473668, |
|
0.00336144, 0.00370314, 0.00600871, 0.01120164, 0.01942998, |
|
0.03132008, 0.0232842 , 0.01124642, 0.02754783, 0.02423725, |
|
0.00147893, 0.00038027, 0.00112299, 0.00596233, 0.00571529, |
|
0.02084235, 0.0231855 , 0.00810006, 0.01837943, 0.00651339, |
|
0.00093931, 0.00067426, 0.01058399, 0.01270507, 0.00151734, |
|
0.00331913, 0.00302416, 0.01081792, 0.00754549, 0.00148963, |
|
0.00111943, 0.00152573, 0.00608017, 0.01749986, 0.01205949, |
|
0.0143082 , 0.01910573, 0.00413786, 0.03916619, 0.09873404, |
|
0.08302026, 0.02673891, 0.00401255, 0.01397392, 0.00751862, |
|
0.01024884, 0.01544606, 0.00638907, 0.00623633, 0.0085103 , |
|
0.00217659, 0.00276204, 0.00260835, 0.00299299, |
|
]) |
|
expected2 = np.array([ |
|
1.89624839e-02, 1.23274978e-02, 3.69160250e-02, 4.76267971e-02, |
|
1.39258439e-02, 2.98370440e-02, 2.74845166e-03, 3.01934010e-03, |
|
1.18722776e-02, 9.70834121e-03, 2.06300567e-04, 6.32975250e-04, |
|
8.20603687e-03, 1.21864351e-02, 3.28791840e-03, 3.36801982e-04, |
|
2.79373326e-03, 5.00530424e-03, 8.46884679e-03, 1.14089288e-02, |
|
8.59052036e-03, 2.88538425e-03, 9.95071139e-03, 6.80431770e-03, |
|
2.95809377e-03, 1.46285209e-04, 3.36268265e-03, 4.80051298e-04, |
|
2.84506916e-03, 9.34222655e-04, 3.42161348e-03, 2.79612141e-03, |
|
3.38875921e-03, 2.85030343e-03, 5.39513239e-05, 2.72908504e-03, |
|
2.09591188e-03, 5.00271388e-04, 8.31917219e-04, 2.37967237e-03, |
|
1.75001193e-03, 1.31826295e-04, 8.83622793e-04, 1.54303256e-04, |
|
3.09544569e-03, 4.08527814e-03, 2.73566321e-03, 1.78805250e-03, |
|
9.53314066e-06, 1.74316950e-03, 1.51099428e-03, 8.65990878e-04, |
|
8.44859460e-04, 5.35220199e-04, 5.36562002e-04, 8.33181897e-04, |
|
8.22705682e-04, 1.81083288e-03, 9.75003233e-04, 6.73114730e-04, |
|
6.81665202e-04, 2.05180887e-03, 1.10151991e-03, 4.75923851e-04, |
|
]) |
|
expected3 = np.array([ |
|
0.07079848, 0.04237922, 0.0220724, 0.04446052, 0.03598337, |
|
0.03327273, 0.02545774, 0.01319528, 0.00919659, 0.01376867, |
|
0.00361992, 0.00608425, 0.01105873, 0.0105565, 0.00744286, |
|
0.00244849, 0.00257317, 0.00749989, 0.01061386, 0.01525312, |
|
0.00656914, 0.01199581, 0.00487319, 0.00830956, 0.0046706, |
|
0.00588962, 0.00544486, 0.00565179, 0.00050112, 0.01108059, |
|
0.00217417, 0.00453234, 0.00537306, 0.00269329, 0.00342333, |
|
0.00095484, 0.00708934, 0.00660373, 0.00543686, 0.00217186, |
|
0.00431519, 0.00457764, 0.00503529, 0.01166454, 0.01375581, |
|
0.01467224, 0.00873404, 0.00534086, 0.00476848, 0.0226163, |
|
0.0314, 0.00151021, 0.01975221, 0.01637519, 0.00046068, |
|
0.0460544, 0.06285986, 0.03151625, 0.0013598, 0.004804, |
|
0.0073824, 0.02312599, 0.02613977, 0.01056851 |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec_list[0][:64, 0], expected1)) |
|
self.assertTrue(np.allclose(spec_list[1][:64, 0], expected2)) |
|
self.assertTrue(np.allclose(spec_list[2][:64, 0], expected3)) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(512, "hann"), |
|
frame_length=512, |
|
hop_length=128, |
|
center=True, |
|
pad_mode="constant", |
|
) |
|
self.assertEqual(spec_list[0].shape, (257, 732)) |
|
self.assertEqual(spec_list[1].shape, (257, 602)) |
|
self.assertEqual(spec_list[2].shape, (257, 1561)) |
|
|
|
|
|
expected1 = np.array([ |
|
0.06558744, 0.06889656, 0.06263352, 0.04264418, 0.03404115, |
|
0.03244197, 0.02279134, 0.01646339, 0.01452216, 0.00826055, |
|
0.00062093, 0.0031821 , 0.00419456, 0.00689327, 0.01106367, |
|
0.01712119, 0.01721762, 0.00977533, 0.01606626, 0.02275621, |
|
0.01727687, 0.00992739, 0.01217688, 0.01049927, 0.01022947, |
|
0.01302475, 0.01166873, 0.01081812, 0.01057327, 0.00767912, |
|
0.00429567, 0.00089625, 0.00654583, 0.00912084, 0.00700984, |
|
0.00225026, 0.00290545, 0.00667712, 0.00730663, 0.00410813, |
|
0.00073102, 0.00219296, 0.00527618, 0.00996585, 0.01123781, |
|
0.00872816, 0.01165121, 0.02047945, 0.03681747, 0.0514379 , |
|
0.05137928, 0.03960042, 0.02821562, 0.01813349, 0.01201322, |
|
0.01260964, 0.00900654, 0.00207905, 0.00456714, 0.00850599, |
|
0.00788239, 0.00664407, 0.00824227, 0.00628301, |
|
]) |
|
expected2 = np.array([ |
|
0.00955754, 0.01445548, 0.02393902, 0.02903068, 0.02512844, |
|
0.01508297, 0.00474784, 0.00440362, 0.0073898, 0.00546519, |
|
0.00126077, 0.00240507, 0.00523254, 0.00632742, 0.00415215, |
|
0.00056628, 0.00161288, 0.0026956, 0.00431587, 0.00621471, |
|
0.00791291, 0.0079454, 0.00594525, 0.00334581, 0.00180047, |
|
0.00144485, 0.00175764, 0.00188037, 0.00134889, 0.00150253, |
|
0.00178821, 0.00158875, 0.00204339, 0.00266497, 0.00280556, |
|
0.00221949, 0.00108956, 0.000532, 0.00108454, 0.00129254, |
|
0.00089315, 0.00022803, 0.00038176, 0.0011302, 0.00189306, |
|
0.0021964, 0.00203576, 0.00207306, 0.00217727, 0.00174297, |
|
0.00103331, 0.00076695, 0.0007422, 0.00061986, 0.00081204, |
|
0.00079615, 0.00089417, 0.00105452, 0.00042615, 0.00066372, |
|
0.00132765, 0.00122087, 0.00054903, 0.00107945, |
|
]) |
|
expected3 = np.array([ |
|
0.03573493, 0.03625983, 0.03341755, 0.02431477, 0.01770546, |
|
0.0169356 , 0.01579034, 0.01600499, 0.01329064, 0.00747957, |
|
0.00367372, 0.00403853, 0.00519597, 0.00551022, 0.00532757, |
|
0.00367569, 0.00130341, 0.00345149, 0.00520744, 0.00872308, |
|
0.01172503, 0.00948154, 0.00344236, 0.00387997, 0.00425455, |
|
0.00394357, 0.00711733, 0.00615654, 0.00055756, 0.00656414, |
|
0.00852001, 0.00666252, 0.00509767, 0.00246784, 0.00376049, |
|
0.00682879, 0.00641118, 0.00469685, 0.00358701, 0.0015552 , |
|
0.00261458, 0.00701979, 0.00929578, 0.00894536, 0.00828491, |
|
0.00773528, 0.00552091, 0.00259871, 0.00933179, 0.01588626, |
|
0.01697887, 0.01268552, 0.00957255, 0.01204092, 0.02123362, |
|
0.03062669, 0.03215763, 0.02629963, 0.01769568, 0.01088869, |
|
0.01151334, 0.01378197, 0.01319263, 0.01066859, |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec_list[0][:64, 0], expected1)) |
|
self.assertTrue(np.allclose(spec_list[1][:64, 0], expected2)) |
|
self.assertTrue(np.allclose(spec_list[2][:64, 0], expected3)) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(512, "hann"), |
|
frame_length=512, |
|
hop_length=128, |
|
center=False, |
|
) |
|
self.assertEqual(spec_list[0].shape, (257, 728)) |
|
self.assertEqual(spec_list[1].shape, (257, 598)) |
|
self.assertEqual(spec_list[2].shape, (257, 1557)) |
|
|
|
|
|
expected1 = np.array([ |
|
0.00250445, 0.02161521, 0.06232229, 0.04339567, 0.00937727, |
|
0.01080616, 0.00248685, 0.0095264 , 0.00727476, 0.0079152 , |
|
0.00839946, 0.00254932, 0.00716622, 0.005559 , 0.00272623, |
|
0.00581774, 0.01896395, 0.01829788, 0.01020514, 0.01632692, |
|
0.00870888, 0.02065827, 0.0136022 , 0.0132382 , 0.011827 , |
|
0.00194505, 0.0189979 , 0.026874 , 0.02194014, 0.01923883, |
|
0.01621437, 0.00661967, 0.00289517, 0.00470257, 0.00957801, |
|
0.00191455, 0.00431664, 0.00544359, 0.01126213, 0.00785778, |
|
0.00423469, 0.01322504, 0.02226548, 0.02318576, 0.03428908, |
|
0.03648811, 0.0202938 , 0.011902 , 0.03226198, 0.06347476, |
|
0.01306318, 0.05308729, 0.05474771, 0.03127991, 0.00998512, |
|
0.01449977, 0.01272741, 0.00868176, 0.00850386, 0.00313876, |
|
0.00811857, 0.00538216, 0.00685749, 0.00535275, |
|
]) |
|
expected2 = np.array([ |
|
0.01232908, 0.05980514, 0.08285419, 0.01850723, 0.02823627, |
|
0.00204369, 0.01372626, 0.00956435, 0.02267217, 0.00947112, |
|
0.00355174, 0.00418008, 0.00843608, 0.01559252, 0.01125505, |
|
0.00183573, 0.00765051, 0.0109983 , 0.00890545, 0.00583453, |
|
0.00115901, 0.00579039, 0.00151353, 0.00395812, 0.00231413, |
|
0.00384272, 0.00313914, 0.00072331, 0.00338935, 0.00383328, |
|
0.00218129, 0.00284516, 0.00228538, 0.00083603, 0.00111663, |
|
0.00235799, 0.00142748, 0.00092908, 0.0012966 , 0.0011403 , |
|
0.0010619 , 0.00158732, 0.00289866, 0.00216709, 0.00313325, |
|
0.00361277, 0.00202507, 0.0009948 , 0.00114428, 0.00200851, |
|
0.0009234 , 0.00063468, 0.00018746, 0.00100463, 0.00053799, |
|
0.00080009, 0.00158291, 0.00172077, 0.00173586, 0.00197127, |
|
0.00107058, 0.00043486, 0.0009859 , 0.00215484, |
|
]) |
|
expected3 = np.array([ |
|
0.01864123, 0.06131337, 0.08346292, 0.04936386, 0.02792609, |
|
0.01005205, 0.00884826, 0.02198604, 0.02421535, 0.00957573, |
|
0.00503561, 0.00241331, 0.00175652, 0.00195889, 0.00453299, |
|
0.0020317 , 0.00249264, 0.00517483, 0.01111943, 0.0150079 , |
|
0.01977743, 0.01253825, 0.00517561, 0.01031712, 0.00579466, |
|
0.00783679, 0.0071415 , 0.00591847, 0.01510728, 0.01194921, |
|
0.00518072, 0.00125978, 0.00577552, 0.01050614, 0.0077644 , |
|
0.0042905 , 0.00278469, 0.00166695, 0.00255013, 0.00578153, |
|
0.00586451, 0.00929514, 0.01501226, 0.00741419, 0.00310625, |
|
0.00086757, 0.00595618, 0.0053882 , 0.0116266 , 0.02504773, |
|
0.02889692, 0.03739442, 0.04730207, 0.03856638, 0.05700104, |
|
0.04299267, 0.02153366, 0.03740607, 0.03811468, 0.01575022, |
|
0.00676344, 0.01359865, 0.01769319, 0.00907966, |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec_list[0][:64, 0], expected1)) |
|
self.assertTrue(np.allclose(spec_list[1][:64, 0], expected2)) |
|
self.assertTrue(np.allclose(spec_list[2][:64, 0], expected3)) |
|
|
|
def test_spectrogram_shapes(self): |
|
waveform = self._load_datasamples(1)[0] |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(400, "hann"), |
|
frame_length=400, |
|
hop_length=128, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=True, |
|
) |
|
self.assertEqual(spec.shape, (201, 732)) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(400, "hann"), |
|
frame_length=400, |
|
hop_length=128, |
|
power=1.0, |
|
center=False, |
|
pad_mode="reflect", |
|
onesided=True, |
|
) |
|
self.assertEqual(spec.shape, (201, 729)) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(400, "hann"), |
|
frame_length=400, |
|
hop_length=128, |
|
fft_length=512, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=True, |
|
) |
|
self.assertEqual(spec.shape, (257, 732)) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(400, "hann", frame_length=512), |
|
frame_length=512, |
|
hop_length=64, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=False, |
|
) |
|
self.assertEqual(spec.shape, (512, 1464)) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(512, "hann"), |
|
frame_length=512, |
|
hop_length=64, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=False, |
|
) |
|
self.assertEqual(spec.shape, (512, 1464)) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(512, "hann"), |
|
frame_length=512, |
|
hop_length=512, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=False, |
|
) |
|
self.assertEqual(spec.shape, (512, 183)) |
|
|
|
def test_spectrogram_batch_shapes(self): |
|
waveform_list = self._load_datasamples(3) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(400, "hann"), |
|
frame_length=400, |
|
hop_length=128, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=True, |
|
) |
|
self.assertEqual(spec_list[0].shape, (201, 732)) |
|
self.assertEqual(spec_list[1].shape, (201, 602)) |
|
self.assertEqual(spec_list[2].shape, (201, 1561)) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(400, "hann"), |
|
frame_length=400, |
|
hop_length=128, |
|
power=1.0, |
|
center=False, |
|
pad_mode="reflect", |
|
onesided=True, |
|
) |
|
self.assertEqual(spec_list[0].shape, (201, 729)) |
|
self.assertEqual(spec_list[1].shape, (201, 599)) |
|
self.assertEqual(spec_list[2].shape, (201, 1558)) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(400, "hann"), |
|
frame_length=400, |
|
hop_length=128, |
|
fft_length=512, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=True, |
|
) |
|
self.assertEqual(spec_list[0].shape, (257, 732)) |
|
self.assertEqual(spec_list[1].shape, (257, 602)) |
|
self.assertEqual(spec_list[2].shape, (257, 1561)) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(400, "hann", frame_length=512), |
|
frame_length=512, |
|
hop_length=64, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=False, |
|
) |
|
self.assertEqual(spec_list[0].shape, (512, 1464)) |
|
self.assertEqual(spec_list[1].shape, (512, 1204)) |
|
self.assertEqual(spec_list[2].shape, (512, 3122)) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(512, "hann"), |
|
frame_length=512, |
|
hop_length=64, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=False, |
|
) |
|
self.assertEqual(spec_list[0].shape, (512, 1464)) |
|
self.assertEqual(spec_list[1].shape, (512, 1204)) |
|
self.assertEqual(spec_list[2].shape, (512, 3122)) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(512, "hann"), |
|
frame_length=512, |
|
hop_length=512, |
|
power=1.0, |
|
center=True, |
|
pad_mode="reflect", |
|
onesided=False, |
|
) |
|
self.assertEqual(spec_list[0].shape, (512, 183)) |
|
self.assertEqual(spec_list[1].shape, (512, 151)) |
|
self.assertEqual(spec_list[2].shape, (512, 391)) |
|
|
|
def test_mel_spectrogram(self): |
|
waveform = self._load_datasamples(1)[0] |
|
|
|
mel_filters = mel_filter_bank( |
|
num_frequency_bins=513, |
|
num_mel_filters=13, |
|
min_frequency=100, |
|
max_frequency=4000, |
|
sampling_rate=16000, |
|
norm=None, |
|
mel_scale="htk", |
|
) |
|
self.assertEqual(mel_filters.shape, (513, 13)) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(800, "hann", frame_length=1024), |
|
frame_length=1024, |
|
hop_length=128, |
|
power=2.0, |
|
) |
|
self.assertEqual(spec.shape, (513, 732)) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(800, "hann", frame_length=1024), |
|
frame_length=1024, |
|
hop_length=128, |
|
power=2.0, |
|
mel_filters=mel_filters, |
|
) |
|
self.assertEqual(spec.shape, (13, 732)) |
|
|
|
|
|
expected = np.array([ |
|
1.08027889e+02, 1.48080673e+01, 7.70758213e+00, 9.57676639e-01, |
|
8.81639061e-02, 5.26073833e-02, 1.52736155e-02, 9.95350117e-03, |
|
7.95364356e-03, 1.01148004e-02, 4.29241020e-03, 9.90708797e-03, |
|
9.44153646e-04 |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec[:, 300], expected)) |
|
|
|
def test_mel_spectrogram_batch(self): |
|
waveform_list = self._load_datasamples(3) |
|
|
|
mel_filters = mel_filter_bank( |
|
num_frequency_bins=513, |
|
num_mel_filters=13, |
|
min_frequency=100, |
|
max_frequency=4000, |
|
sampling_rate=16000, |
|
norm=None, |
|
mel_scale="htk", |
|
) |
|
self.assertEqual(mel_filters.shape, (513, 13)) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(800, "hann", frame_length=1024), |
|
frame_length=1024, |
|
hop_length=128, |
|
power=2.0, |
|
) |
|
self.assertEqual(spec_list[0].shape, (513, 732)) |
|
self.assertEqual(spec_list[1].shape, (513, 602)) |
|
self.assertEqual(spec_list[2].shape, (513, 1561)) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(800, "hann", frame_length=1024), |
|
frame_length=1024, |
|
hop_length=128, |
|
power=2.0, |
|
mel_filters=mel_filters, |
|
) |
|
self.assertEqual(spec_list[0].shape, (13, 732)) |
|
self.assertEqual(spec_list[1].shape, (13, 602)) |
|
self.assertEqual(spec_list[2].shape, (13, 1561)) |
|
|
|
|
|
expected1 = np.array([ |
|
1.08027889e+02, 1.48080673e+01, 7.70758213e+00, 9.57676639e-01, |
|
8.81639061e-02, 5.26073833e-02, 1.52736155e-02, 9.95350117e-03, |
|
7.95364356e-03, 1.01148004e-02, 4.29241020e-03, 9.90708797e-03, |
|
9.44153646e-04 |
|
]) |
|
expected2 = np.array([ |
|
71.82577165, 109.44693334, 272.4834194, 164.90450355, |
|
16.54056349, 11.60810547, 24.87525946, 21.07317022, |
|
1.26736284, 1.4583074, 1.36659061, 1.76305768, |
|
2.03703503 |
|
]) |
|
expected3 = np.array([ |
|
5.22246749e+02, 6.92660728e+02, 2.65895922e+02, 2.06526565e+01, |
|
2.28692104e+00, 1.19473622e+00, 8.43228216e-01, 3.20760592e+00, |
|
1.33654151e+00, 1.51050684e-01, 2.78282477e-01, 9.25020981e-01, |
|
2.29908841e-01 |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec_list[0][:, 300], expected1)) |
|
self.assertTrue(np.allclose(spec_list[1][:, 300], expected2)) |
|
self.assertTrue(np.allclose(spec_list[2][:, 300], expected3)) |
|
|
|
def test_spectrogram_power(self): |
|
waveform = self._load_datasamples(1)[0] |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(400, "hann", frame_length=512), |
|
frame_length=512, |
|
hop_length=128, |
|
power=None, |
|
) |
|
self.assertEqual(spec.shape, (257, 732)) |
|
self.assertEqual(spec.dtype, np.complex64) |
|
|
|
|
|
expected = np.array([ |
|
0.01452305+0.01820039j, -0.01737362-0.01641946j, |
|
0.0121028 +0.01565081j, -0.02794554-0.03021514j, |
|
0.04719803+0.04086519j, -0.04391563-0.02779365j, |
|
0.05682834+0.01571325j, -0.08604821-0.02023657j, |
|
0.07497991+0.0186641j , -0.06366091-0.00922475j, |
|
0.11003416+0.0114788j , -0.13677941-0.01523552j, |
|
0.10934535-0.00117226j, -0.11635598+0.02551187j, |
|
0.14708674-0.03469823j, -0.1328196 +0.06034218j, |
|
0.12667368-0.13973421j, -0.14764774+0.18912019j, |
|
0.10235471-0.12181523j, -0.00773012+0.04730498j, |
|
-0.01487191-0.07312611j, -0.02739162+0.09619419j, |
|
0.02895459-0.05398273j, 0.01198589+0.05276592j, |
|
-0.02117299-0.10123465j, 0.00666388+0.09526499j, |
|
-0.01672773-0.05649684j, 0.02723125+0.05939891j, |
|
-0.01879361-0.062954j , 0.03686557+0.04568823j, |
|
-0.07394181-0.07949649j, 0.06238583+0.13905765j, |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec[64:96, 321], expected)) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(400, "hann", frame_length=512), |
|
frame_length=512, |
|
hop_length=128, |
|
power=1.0, |
|
) |
|
self.assertEqual(spec.shape, (257, 732)) |
|
self.assertEqual(spec.dtype, np.float64) |
|
|
|
|
|
expected = np.array([ |
|
0.02328461, 0.02390484, 0.01978448, 0.04115711, 0.0624309 , |
|
0.05197181, 0.05896072, 0.08839577, 0.07726794, 0.06432579, |
|
0.11063128, 0.13762532, 0.10935163, 0.11911998, 0.15112405, |
|
0.14588428, 0.18860507, 0.23992978, 0.15910825, 0.04793241, |
|
0.07462307, 0.10001811, 0.06125769, 0.05411011, 0.10342509, |
|
0.09549777, 0.05892122, 0.06534349, 0.06569936, 0.05870678, |
|
0.10856833, 0.1524107 , 0.11463385, 0.05766969, 0.12385171, |
|
0.14472842, 0.11978184, 0.10353675, 0.07244056, 0.03461861, |
|
0.02624896, 0.02227475, 0.01238363, 0.00885281, 0.0110049 , |
|
0.00807005, 0.01033663, 0.01703181, 0.01445856, 0.00585615, |
|
0.0132431 , 0.02754132, 0.01524478, 0.0204908 , 0.07453328, |
|
0.10716327, 0.07195779, 0.08816078, 0.18340898, 0.16449876, |
|
0.12322842, 0.1621659 , 0.12334293, 0.06033659, |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec[64:128, 321], expected)) |
|
|
|
spec = spectrogram( |
|
waveform, |
|
window_function(400, "hann", frame_length=512), |
|
frame_length=512, |
|
hop_length=128, |
|
power=2.0, |
|
) |
|
self.assertEqual(spec.shape, (257, 732)) |
|
self.assertEqual(spec.dtype, np.float64) |
|
|
|
|
|
expected = np.array([ |
|
5.42173162e-04, 5.71441371e-04, 3.91425507e-04, 1.69390778e-03, |
|
3.89761780e-03, 2.70106923e-03, 3.47636663e-03, 7.81381316e-03, |
|
5.97033510e-03, 4.13780799e-03, 1.22392802e-02, 1.89407300e-02, |
|
1.19577805e-02, 1.41895693e-02, 2.28384770e-02, 2.12822221e-02, |
|
3.55718732e-02, 5.75663000e-02, 2.53154356e-02, 2.29751552e-03, |
|
5.56860259e-03, 1.00036217e-02, 3.75250424e-03, 2.92790355e-03, |
|
1.06967501e-02, 9.11982451e-03, 3.47171025e-03, 4.26977174e-03, |
|
4.31640586e-03, 3.44648538e-03, 1.17870830e-02, 2.32290216e-02, |
|
1.31409196e-02, 3.32579296e-03, 1.53392460e-02, 2.09463164e-02, |
|
1.43476883e-02, 1.07198600e-02, 5.24763530e-03, 1.19844836e-03, |
|
6.89007982e-04, 4.96164430e-04, 1.53354369e-04, 7.83722571e-05, |
|
1.21107812e-04, 6.51257360e-05, 1.06845939e-04, 2.90082477e-04, |
|
2.09049831e-04, 3.42945241e-05, 1.75379610e-04, 7.58524227e-04, |
|
2.32403356e-04, 4.19872697e-04, 5.55520924e-03, 1.14839673e-02, |
|
5.17792348e-03, 7.77232368e-03, 3.36388536e-02, 2.70598419e-02, |
|
1.51852425e-02, 2.62977779e-02, 1.52134784e-02, 3.64050455e-03, |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec[64:128, 321], expected)) |
|
|
|
def test_spectrogram_batch_power(self): |
|
waveform_list = self._load_datasamples(3) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(400, "hann", frame_length=512), |
|
frame_length=512, |
|
hop_length=128, |
|
power=None, |
|
) |
|
self.assertEqual(spec_list[0].shape, (257, 732)) |
|
self.assertEqual(spec_list[0].dtype, np.complex64) |
|
self.assertEqual(spec_list[1].shape, (257, 602)) |
|
self.assertEqual(spec_list[1].dtype, np.complex64) |
|
self.assertEqual(spec_list[2].shape, (257, 1561)) |
|
self.assertEqual(spec_list[2].dtype, np.complex64) |
|
|
|
|
|
expected1 = np.array([ |
|
0.01452305+0.01820039j, -0.01737362-0.01641946j, |
|
0.0121028 +0.01565081j, -0.02794554-0.03021514j, |
|
0.04719803+0.04086519j, -0.04391563-0.02779365j, |
|
0.05682834+0.01571325j, -0.08604821-0.02023657j, |
|
0.07497991+0.0186641j , -0.06366091-0.00922475j, |
|
0.11003416+0.0114788j , -0.13677941-0.01523552j, |
|
0.10934535-0.00117226j, -0.11635598+0.02551187j, |
|
0.14708674-0.03469823j, -0.1328196 +0.06034218j, |
|
0.12667368-0.13973421j, -0.14764774+0.18912019j, |
|
0.10235471-0.12181523j, -0.00773012+0.04730498j, |
|
-0.01487191-0.07312611j, -0.02739162+0.09619419j, |
|
0.02895459-0.05398273j, 0.01198589+0.05276592j, |
|
-0.02117299-0.10123465j, 0.00666388+0.09526499j, |
|
-0.01672773-0.05649684j, 0.02723125+0.05939891j, |
|
-0.01879361-0.062954j , 0.03686557+0.04568823j, |
|
-0.07394181-0.07949649j, 0.06238583+0.13905765j, |
|
]) |
|
expected2 = np.array([ |
|
-0.01634146-7.0067253e-03j, -0.00068403+9.2661660e-03j, |
|
0.00571721-3.9035487e-03j, -0.00915086+1.5033451e-03j, |
|
0.01138636+5.4256055e-03j, -0.00294282-1.2016168e-02j, |
|
-0.00428711+7.3687937e-03j, -0.001002 -1.3972387e-03j, |
|
0.00622582+3.7551194e-03j, -0.00137886-7.0342086e-03j, |
|
-0.00824075+3.8430823e-03j, 0.0107349 +7.1450039e-03j, |
|
0.00363763-1.4242286e-02j, -0.01499857+1.7917662e-05j, |
|
-0.0046242 +1.2500680e-02j, 0.02180984+7.2047939e-03j, |
|
-0.00273568-1.6844695e-02j, -0.00178986-7.5209686e-03j, |
|
-0.01661806+1.2662713e-03j, -0.01045276+2.0611197e-02j, |
|
0.03252975+2.5592113e-02j, 0.03945662-6.7136563e-02j, |
|
-0.10622615+4.9393820e-03j, 0.06684612+6.4607985e-02j, |
|
-0.00753762-5.1637031e-02j, -0.00220644+1.8002450e-02j, |
|
-0.00357443-4.1291970e-03j, 0.01463647-1.4063751e-03j, |
|
-0.02252573-1.1189026e-02j, 0.00276293+1.9019062e-02j, |
|
0.01216721+1.2095908e-03j, 0.00034753-7.4386634e-03j |
|
]) |
|
expected3 = np.array([ |
|
2.3276670e-02+0.0406534j, -2.4413882e-02-0.07868771j, |
|
1.0993068e-02+0.05550544j, -1.5825305e-02+0.00480187j, |
|
4.7617555e-02-0.04421869j, -7.1669750e-02+0.06317082j, |
|
5.9706111e-02-0.08369736j, -2.2317577e-02+0.08915959j, |
|
-2.3291381e-02-0.06601578j, 5.9362967e-02+0.03185856j, |
|
-6.5269925e-02+0.0030586j, 5.0898481e-02-0.04319243j, |
|
-4.0413942e-02+0.08051146j, 3.0059000e-02-0.09730332j, |
|
-1.2479190e-02+0.09703682j, -6.1806822e-03-0.09617531j, |
|
2.6907364e-02+0.08084074j, -4.1639723e-02-0.03391053j, |
|
3.1113219e-02-0.01497662j, 3.4023849e-03+0.03632669j, |
|
-4.9804080e-02-0.039231j, 8.9777440e-02+0.02577243j, |
|
-9.2947647e-02+0.01514865j, 6.2368069e-02-0.05954866j, |
|
-2.9966677e-02+0.06520324j, -8.2365885e-05-0.0440613j , |
|
2.0203773e-02+0.04350767j, -8.9924788e-04-0.05406843j, |
|
-3.5951469e-02+0.03055602j, 3.3790238e-02+0.02182594j, |
|
1.0919777e-03-0.06437822j, -1.8534327e-02+0.07866792j |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec_list[0][64:96, 321], expected1)) |
|
self.assertTrue(np.allclose(spec_list[1][64:96, 321], expected2)) |
|
self.assertTrue(np.allclose(spec_list[2][64:96, 321], expected3)) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(400, "hann", frame_length=512), |
|
frame_length=512, |
|
hop_length=128, |
|
power=1.0, |
|
) |
|
self.assertEqual(spec_list[0].shape, (257, 732)) |
|
self.assertEqual(spec_list[0].dtype, np.float64) |
|
self.assertEqual(spec_list[1].shape, (257, 602)) |
|
self.assertEqual(spec_list[1].dtype, np.float64) |
|
self.assertEqual(spec_list[2].shape, (257, 1561)) |
|
self.assertEqual(spec_list[2].dtype, np.float64) |
|
|
|
|
|
expected1 = np.array([ |
|
0.02328461, 0.02390484, 0.01978448, 0.04115711, 0.0624309 , |
|
0.05197181, 0.05896072, 0.08839577, 0.07726794, 0.06432579, |
|
0.11063128, 0.13762532, 0.10935163, 0.11911998, 0.15112405, |
|
0.14588428, 0.18860507, 0.23992978, 0.15910825, 0.04793241, |
|
0.07462307, 0.10001811, 0.06125769, 0.05411011, 0.10342509, |
|
0.09549777, 0.05892122, 0.06534349, 0.06569936, 0.05870678, |
|
0.10856833, 0.1524107 , 0.11463385, 0.05766969, 0.12385171, |
|
0.14472842, 0.11978184, 0.10353675, 0.07244056, 0.03461861, |
|
0.02624896, 0.02227475, 0.01238363, 0.00885281, 0.0110049 , |
|
0.00807005, 0.01033663, 0.01703181, 0.01445856, 0.00585615, |
|
0.0132431 , 0.02754132, 0.01524478, 0.0204908 , 0.07453328, |
|
0.10716327, 0.07195779, 0.08816078, 0.18340898, 0.16449876, |
|
0.12322842, 0.1621659 , 0.12334293, 0.06033659, |
|
]) |
|
expected2 = np.array([ |
|
0.01778026, 0.00929138, 0.00692273, 0.00927352, 0.01261294, |
|
0.01237128, 0.00852516, 0.00171938, 0.00727061, 0.00716808, |
|
0.00909281, 0.01289532, 0.01469949, 0.01499858, 0.01332855, |
|
0.02296907, 0.01706539, 0.00773101, 0.01666623, 0.02311021, |
|
0.0413901, 0.07787261, 0.10634092, 0.09296556, 0.05218428, |
|
0.01813716, 0.00546139, 0.01470388, 0.02515159, 0.0192187, |
|
0.01222719, 0.00744678, 0.01045674, 0.01923522, 0.01990819, |
|
0.01174323, 0.01535391, 0.02786647, 0.02904595, 0.0313408 , |
|
0.0340503, 0.03118268, 0.02915136, 0.04200513, 0.05563153, |
|
0.05429446, 0.05021769, 0.05882667, 0.06668596, 0.06555867, |
|
0.04523559, 0.01489498, 0.01031892, 0.02134155, 0.01736669, |
|
0.0195216, 0.03971575, 0.03938636, 0.02052712, 0.03104931, |
|
0.0902727, 0.09022622, 0.03275532, 0.0172633, |
|
]) |
|
expected3 = np.array([ |
|
0.04684551, 0.08238806, 0.05658358, 0.01653778, 0.06498249, |
|
0.09553589, 0.10281084, 0.09191031, 0.07000408, 0.06737158, |
|
0.06534155, 0.06675509, 0.09008541, 0.10184046, 0.09783596, |
|
0.0963737, 0.08520112, 0.05370093, 0.03453015, 0.03648568, |
|
0.06339967, 0.09340346, 0.09417402, 0.08623119, 0.07175977, |
|
0.04406138, 0.04796988, 0.05407591, 0.0471824 , 0.04022626, |
|
0.06438748, 0.0808218, 0.0745263, 0.06191467, 0.03116328, |
|
0.03206497, 0.05867718, 0.04424652, 0.04448404, 0.07032498, |
|
0.08300796, 0.07895744, 0.0816894, 0.09392357, 0.07571699, |
|
0.03967651, 0.07703795, 0.06464871, 0.08704693, 0.14085226, |
|
0.1350321, 0.18794712, 0.27043005, 0.26596246, 0.19948336, |
|
0.06545141, 0.13204652, 0.08554521, 0.2262849, 0.33900721, |
|
0.3970475, 0.3482436, 0.17134947, 0.46249565, |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec_list[0][64:128, 321], expected1)) |
|
self.assertTrue(np.allclose(spec_list[1][64:128, 321], expected2)) |
|
self.assertTrue(np.allclose(spec_list[2][64:128, 321], expected3)) |
|
|
|
spec_list = spectrogram_batch( |
|
waveform_list, |
|
window_function(400, "hann", frame_length=512), |
|
frame_length=512, |
|
hop_length=128, |
|
power=2.0, |
|
) |
|
self.assertEqual(spec_list[0].shape, (257, 732)) |
|
self.assertEqual(spec_list[0].dtype, np.float64) |
|
self.assertEqual(spec_list[1].shape, (257, 602)) |
|
self.assertEqual(spec_list[1].dtype, np.float64) |
|
self.assertEqual(spec_list[2].shape, (257, 1561)) |
|
self.assertEqual(spec_list[2].dtype, np.float64) |
|
|
|
|
|
expected1 = np.array([ |
|
5.42173162e-04, 5.71441371e-04, 3.91425507e-04, 1.69390778e-03, |
|
3.89761780e-03, 2.70106923e-03, 3.47636663e-03, 7.81381316e-03, |
|
5.97033510e-03, 4.13780799e-03, 1.22392802e-02, 1.89407300e-02, |
|
1.19577805e-02, 1.41895693e-02, 2.28384770e-02, 2.12822221e-02, |
|
3.55718732e-02, 5.75663000e-02, 2.53154356e-02, 2.29751552e-03, |
|
5.56860259e-03, 1.00036217e-02, 3.75250424e-03, 2.92790355e-03, |
|
1.06967501e-02, 9.11982451e-03, 3.47171025e-03, 4.26977174e-03, |
|
4.31640586e-03, 3.44648538e-03, 1.17870830e-02, 2.32290216e-02, |
|
1.31409196e-02, 3.32579296e-03, 1.53392460e-02, 2.09463164e-02, |
|
1.43476883e-02, 1.07198600e-02, 5.24763530e-03, 1.19844836e-03, |
|
6.89007982e-04, 4.96164430e-04, 1.53354369e-04, 7.83722571e-05, |
|
1.21107812e-04, 6.51257360e-05, 1.06845939e-04, 2.90082477e-04, |
|
2.09049831e-04, 3.42945241e-05, 1.75379610e-04, 7.58524227e-04, |
|
2.32403356e-04, 4.19872697e-04, 5.55520924e-03, 1.14839673e-02, |
|
5.17792348e-03, 7.77232368e-03, 3.36388536e-02, 2.70598419e-02, |
|
1.51852425e-02, 2.62977779e-02, 1.52134784e-02, 3.64050455e-03, |
|
]) |
|
expected2 = np.array([ |
|
3.16137604e-04, 8.63297362e-05, 4.79241720e-05, 8.59982493e-05, |
|
1.59086326e-04, 1.53048476e-04, 7.26783945e-05, 2.95627100e-06, |
|
5.28617352e-05, 5.13813355e-05, 8.26792588e-05, 1.66289156e-04, |
|
2.16075069e-04, 2.24957314e-04, 1.77650211e-04, 5.27578282e-04, |
|
2.91227688e-04, 5.97685493e-05, 2.77763360e-04, 5.34081651e-04, |
|
1.71314057e-03, 6.06414277e-03, 1.13083916e-02, 8.64259617e-03, |
|
2.72319867e-03, 3.28956593e-04, 2.98268126e-05, 2.16204145e-04, |
|
6.32602626e-04, 3.69358508e-04, 1.49504171e-04, 5.54544917e-05, |
|
1.09343371e-04, 3.69993847e-04, 3.96335839e-04, 1.37903521e-04, |
|
2.35742483e-04, 7.76540114e-04, 8.43667068e-04, 9.82245923e-04, |
|
1.15942286e-03, 9.72359636e-04, 8.49801853e-04, 1.76443092e-03, |
|
3.09486753e-03, 2.94788822e-03, 2.52181630e-03, 3.46057723e-03, |
|
4.44701769e-03, 4.29793858e-03, 2.04625858e-03, 2.21860290e-04, |
|
1.06480179e-04, 4.55461892e-04, 3.01601836e-04, 3.81092892e-04, |
|
1.57734053e-03, 1.55128531e-03, 4.21362677e-04, 9.64059883e-04, |
|
8.14916019e-03, 8.14077014e-03, 1.07291131e-03, 2.98021545e-04, |
|
]) |
|
expected3 = np.array([ |
|
0.0021945 , 0.00678779, 0.0032017 , 0.0002735 , 0.00422272, |
|
0.00912711, 0.01057007, 0.00844751, 0.00490057, 0.00453893, |
|
0.00426952, 0.00445624, 0.00811538, 0.01037148, 0.00957188, |
|
0.00928789, 0.00725923, 0.00288379, 0.00119233, 0.0013312 , |
|
0.00401952, 0.00872421, 0.00886875, 0.00743582, 0.00514946, |
|
0.00194141, 0.00230111, 0.0029242 , 0.00222618, 0.00161815, |
|
0.00414575, 0.00653216, 0.00555417, 0.00383343, 0.00097115, |
|
0.00102816, 0.00344301, 0.00195775, 0.00197883, 0.0049456 , |
|
0.00689032, 0.00623428, 0.00667316, 0.00882164, 0.00573306, |
|
0.00157423, 0.00593485, 0.00417946, 0.00757717, 0.01983936, |
|
0.01823367, 0.03532412, 0.07313241, 0.07073603, 0.03979361, |
|
0.00428389, 0.01743628, 0.00731798, 0.05120486, 0.11492589, |
|
0.15764671, 0.1212736 , 0.02936064, 0.21390222 |
|
]) |
|
|
|
self.assertTrue(np.allclose(spec_list[0][64:128, 321], expected1)) |
|
self.assertTrue(np.allclose(spec_list[1][64:128, 321], expected2)) |
|
self.assertTrue(np.allclose(spec_list[2][64:128, 321], expected3)) |
|
|
|
def test_power_to_db(self): |
|
spectrogram = np.zeros((2, 3)) |
|
spectrogram[0, 0] = 2.0 |
|
spectrogram[0, 1] = 0.5 |
|
spectrogram[0, 2] = 0.707 |
|
spectrogram[1, 1] = 1.0 |
|
|
|
output = power_to_db(spectrogram, reference=1.0) |
|
expected = np.array([[3.01029996, -3.01029996, -1.50580586], [-100.0, 0.0, -100.0]]) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = power_to_db(spectrogram, reference=2.0) |
|
expected = np.array([[0.0, -6.02059991, -4.51610582], [-103.01029996, -3.01029996, -103.01029996]]) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = power_to_db(spectrogram, min_value=1e-6) |
|
expected = np.array([[3.01029996, -3.01029996, -1.50580586], [-60.0, 0.0, -60.0]]) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = power_to_db(spectrogram, db_range=80) |
|
expected = np.array([[3.01029996, -3.01029996, -1.50580586], [-76.98970004, 0.0, -76.98970004]]) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = power_to_db(spectrogram, reference=2.0, db_range=80) |
|
expected = np.array([[0.0, -6.02059991, -4.51610582], [-80.0, -3.01029996, -80.0]]) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = power_to_db(spectrogram, reference=2.0, min_value=1e-6, db_range=80) |
|
expected = np.array([[0.0, -6.02059991, -4.51610582], [-63.01029996, -3.01029996, -63.01029996]]) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
with pytest.raises(ValueError): |
|
power_to_db(spectrogram, reference=0.0) |
|
with pytest.raises(ValueError): |
|
power_to_db(spectrogram, min_value=0.0) |
|
with pytest.raises(ValueError): |
|
power_to_db(spectrogram, db_range=-80) |
|
|
|
def test_power_to_db_batch(self): |
|
|
|
batch_spectrogram = np.zeros((3, 2, 3)) |
|
batch_spectrogram[0, 0, 0] = 2.0 |
|
batch_spectrogram[0, 0, 1] = 0.5 |
|
batch_spectrogram[0, 0, 2] = 0.707 |
|
batch_spectrogram[0, 1, 1] = 1.0 |
|
batch_spectrogram[1, :, :2] = batch_spectrogram[0, :, :2] * 1.5 |
|
batch_spectrogram[2, :, :1] = batch_spectrogram[0, :, :1] * 0.5 |
|
|
|
|
|
output = power_to_db_batch(batch_spectrogram, reference=1.0) |
|
expected = np.array( |
|
[ |
|
[[3.01029996, -3.01029996, -1.50580586], [-100, 0, -100]], |
|
[[4.77121255, -1.24938737, -100], [-100, 1.76091259, -100]], |
|
[[0, -100, -100], [-100, -100, -100]], |
|
] |
|
) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = power_to_db_batch(batch_spectrogram, reference=2.0) |
|
expected = np.array( |
|
[ |
|
[[0, -6.02059991, -4.51610582], [-103.01029996, -3.01029996, -103.01029996]], |
|
[[1.76091259, -4.25968732, -103.01029996], [-103.01029996, -1.24938737, -103.01029996]], |
|
[[-3.01029996, -103.01029996, -103.01029996], [-103.01029996, -103.01029996, -103.01029996]], |
|
] |
|
) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = power_to_db_batch(batch_spectrogram, min_value=1e-6) |
|
expected = np.array( |
|
[ |
|
[[3.01029996, -3.01029996, -1.50580586], [-60, 0, -60]], |
|
[[4.77121255, -1.24938737, -60], [-60, 1.76091259, -60]], |
|
[[0, -60, -60], [-60, -60, -60]], |
|
] |
|
) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = power_to_db_batch(batch_spectrogram, db_range=80) |
|
expected = np.array( |
|
[ |
|
[[3.01029996, -3.01029996, -1.50580586], [-76.98970004, 0, -76.98970004]], |
|
[[4.77121255, -1.24938737, -75.22878745], [-75.22878745, 1.76091259, -75.22878745]], |
|
[[0, -80, -80], [-80, -80, -80]], |
|
] |
|
) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = power_to_db_batch(batch_spectrogram, reference=2.0, db_range=80) |
|
expected = np.array( |
|
[ |
|
[[0, -6.02059991, -4.51610582], [-80, -3.01029996, -80]], |
|
[[1.76091259, -4.25968732, -78.23908741], [-78.23908741, -1.24938737, -78.23908741]], |
|
[[-3.01029996, -83.01029996, -83.01029996], [-83.01029996, -83.01029996, -83.01029996]], |
|
] |
|
) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = power_to_db_batch(batch_spectrogram, reference=2.0, min_value=1e-6, db_range=80) |
|
expected = np.array( |
|
[ |
|
[[0, -6.02059991, -4.51610582], [-63.01029996, -3.01029996, -63.01029996]], |
|
[[1.76091259, -4.25968732, -63.01029996], [-63.01029996, -1.24938737, -63.01029996]], |
|
[[-3.01029996, -63.01029996, -63.01029996], [-63.01029996, -63.01029996, -63.01029996]], |
|
] |
|
) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
with pytest.raises(ValueError): |
|
power_to_db_batch(batch_spectrogram, reference=0.0) |
|
with pytest.raises(ValueError): |
|
power_to_db_batch(batch_spectrogram, min_value=0.0) |
|
with pytest.raises(ValueError): |
|
power_to_db_batch(batch_spectrogram, db_range=-80) |
|
|
|
def test_amplitude_to_db(self): |
|
spectrogram = np.zeros((2, 3)) |
|
spectrogram[0, 0] = 2.0 |
|
spectrogram[0, 1] = 0.5 |
|
spectrogram[0, 2] = 0.707 |
|
spectrogram[1, 1] = 1.0 |
|
|
|
output = amplitude_to_db(spectrogram, reference=1.0) |
|
expected = np.array([[6.02059991, -6.02059991, -3.01161172], [-100.0, 0.0, -100.0]]) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = amplitude_to_db(spectrogram, reference=2.0) |
|
expected = np.array([[0.0, -12.04119983, -9.03221164], [-106.02059991, -6.02059991, -106.02059991]]) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = amplitude_to_db(spectrogram, min_value=1e-3) |
|
expected = np.array([[6.02059991, -6.02059991, -3.01161172], [-60.0, 0.0, -60.0]]) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = amplitude_to_db(spectrogram, db_range=80) |
|
expected = np.array([[6.02059991, -6.02059991, -3.01161172], [-73.97940009, 0.0, -73.97940009]]) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = amplitude_to_db(spectrogram, reference=2.0, db_range=80) |
|
expected = np.array([[0.0, -12.04119983, -9.03221164], [-80.0, -6.02059991, -80.0]]) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = amplitude_to_db(spectrogram, reference=2.0, min_value=1e-3, db_range=80) |
|
expected = np.array([[0.0, -12.04119983, -9.03221164], [-66.02059991, -6.02059991, -66.02059991]]) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
with pytest.raises(ValueError): |
|
amplitude_to_db(spectrogram, reference=0.0) |
|
with pytest.raises(ValueError): |
|
amplitude_to_db(spectrogram, min_value=0.0) |
|
with pytest.raises(ValueError): |
|
amplitude_to_db(spectrogram, db_range=-80) |
|
|
|
def test_amplitude_to_db_batch(self): |
|
|
|
batch_spectrogram = np.zeros((3, 2, 3)) |
|
batch_spectrogram[0, 0, 0] = 2.0 |
|
batch_spectrogram[0, 0, 1] = 0.5 |
|
batch_spectrogram[0, 0, 2] = 0.707 |
|
batch_spectrogram[0, 1, 1] = 1.0 |
|
batch_spectrogram[1, :, :2] = batch_spectrogram[0, :, :2] * 1.5 |
|
batch_spectrogram[2, :, :1] = batch_spectrogram[0, :, :1] * 0.5 |
|
|
|
|
|
output = amplitude_to_db_batch(batch_spectrogram, reference=1.0) |
|
expected = np.array( |
|
[ |
|
[[6.02059991, -6.02059991, -3.01161172], [-100, 0, -100]], |
|
[[9.54242509, -2.49877473, -100], [-100, 3.52182518, -100]], |
|
[[0, -100, -100], [-100, -100, -100]], |
|
] |
|
) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = amplitude_to_db_batch(batch_spectrogram, reference=2.0) |
|
expected = np.array( |
|
[ |
|
[[0, -12.04119983, -9.03221164], [-106.02059991, -6.02059991, -106.02059991]], |
|
[[3.52182518, -8.51937465, -106.02059991], [-106.02059991, -2.49877473, -106.02059991]], |
|
[[-6.02059991, -106.02059991, -106.02059991], [-106.02059991, -106.02059991, -106.02059991]], |
|
] |
|
) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = amplitude_to_db_batch(batch_spectrogram, min_value=1e-3) |
|
expected = np.array( |
|
[ |
|
[[6.02059991, -6.02059991, -3.01161172], [-60, 0, -60]], |
|
[[9.54242509, -2.49877473, -60], [-60, 3.52182518, -60]], |
|
[[0, -60, -60], [-60, -60, -60]], |
|
] |
|
) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = amplitude_to_db_batch(batch_spectrogram, db_range=80) |
|
expected = np.array( |
|
[ |
|
[[6.02059991, -6.02059991, -3.01161172], [-73.97940009, 0, -73.97940009]], |
|
[[9.54242509, -2.49877473, -70.45757491], [-70.45757491, 3.52182518, -70.45757491]], |
|
[[0, -80, -80], [-80, -80, -80]], |
|
] |
|
) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = amplitude_to_db_batch(batch_spectrogram, reference=2.0, db_range=80) |
|
expected = np.array( |
|
[ |
|
[[0, -12.04119983, -9.03221164], [-80, -6.02059991, -80]], |
|
[[3.52182518, -8.51937465, -76.47817482], [-76.47817482, -2.49877473, -76.47817482]], |
|
[[-6.02059991, -86.02059991, -86.02059991], [-86.02059991, -86.02059991, -86.02059991]], |
|
] |
|
) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
output = amplitude_to_db_batch(batch_spectrogram, reference=2.0, min_value=1e-3, db_range=80) |
|
expected = np.array( |
|
[ |
|
[[0, -12.04119983, -9.03221164], [-66.02059991, -6.02059991, -66.02059991]], |
|
[[3.52182518, -8.51937465, -66.02059991], [-66.02059991, -2.49877473, -66.02059991]], |
|
[[-6.02059991, -66.02059991, -66.02059991], [-66.02059991, -66.02059991, -66.02059991]], |
|
] |
|
) |
|
self.assertTrue(np.allclose(output, expected)) |
|
|
|
with pytest.raises(ValueError): |
|
amplitude_to_db_batch(batch_spectrogram, reference=0.0) |
|
with pytest.raises(ValueError): |
|
amplitude_to_db_batch(batch_spectrogram, min_value=0.0) |
|
with pytest.raises(ValueError): |
|
amplitude_to_db_batch(batch_spectrogram, db_range=-80) |
|
|
|
@require_librosa |
|
def test_chroma_equivalence(self): |
|
num_frequency_bins = 25 |
|
num_chroma = 6 |
|
sampling_rate = 24000 |
|
|
|
|
|
original_chroma = chroma(sr=sampling_rate, n_chroma=num_chroma, n_fft=num_frequency_bins) |
|
utils_chroma = chroma_filter_bank( |
|
num_frequency_bins=num_frequency_bins, num_chroma=num_chroma, sampling_rate=sampling_rate |
|
) |
|
|
|
self.assertTrue(np.allclose(original_chroma, utils_chroma)) |
|
|
|
|
|
original_chroma = chroma(sr=sampling_rate, n_chroma=num_chroma, n_fft=num_frequency_bins, octwidth=None) |
|
utils_chroma = chroma_filter_bank( |
|
num_frequency_bins=num_frequency_bins, |
|
num_chroma=num_chroma, |
|
sampling_rate=sampling_rate, |
|
weighting_parameters=None, |
|
) |
|
|
|
self.assertTrue(np.allclose(original_chroma, utils_chroma)) |
|
|
|
|
|
original_chroma = chroma(sr=sampling_rate, n_chroma=num_chroma, n_fft=num_frequency_bins, norm=1.0) |
|
utils_chroma = chroma_filter_bank( |
|
num_frequency_bins=num_frequency_bins, num_chroma=num_chroma, sampling_rate=sampling_rate, power=1.0 |
|
) |
|
|
|
self.assertTrue(np.allclose(original_chroma, utils_chroma)) |
|
|
|
|
|
original_chroma = chroma( |
|
sr=sampling_rate, |
|
n_chroma=num_chroma, |
|
n_fft=num_frequency_bins, |
|
norm=None, |
|
base_c=None, |
|
octwidth=1.0, |
|
ctroct=4.0, |
|
) |
|
utils_chroma = chroma_filter_bank( |
|
num_frequency_bins=num_frequency_bins, |
|
num_chroma=num_chroma, |
|
sampling_rate=sampling_rate, |
|
power=None, |
|
start_at_c_chroma=False, |
|
weighting_parameters=(4.0, 1.0), |
|
) |
|
|
|
self.assertTrue(np.allclose(original_chroma, utils_chroma)) |
|
|