|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import shutil |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from transformers import ( |
|
BertTokenizer, |
|
DataCollatorForLanguageModeling, |
|
DataCollatorForPermutationLanguageModeling, |
|
DataCollatorForSeq2Seq, |
|
DataCollatorForTokenClassification, |
|
DataCollatorForWholeWordMask, |
|
DataCollatorWithFlattening, |
|
DataCollatorWithPadding, |
|
default_data_collator, |
|
is_tf_available, |
|
is_torch_available, |
|
set_seed, |
|
) |
|
from transformers.testing_utils import require_tf, require_torch |
|
from transformers.utils import PaddingStrategy |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
|
|
@require_torch |
|
class DataCollatorIntegrationTest(unittest.TestCase): |
|
def setUp(self): |
|
self.tmpdirname = tempfile.mkdtemp() |
|
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"] |
|
self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt") |
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmpdirname) |
|
|
|
def test_default_with_dict(self): |
|
features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features) |
|
self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8))))) |
|
self.assertEqual(batch["labels"].dtype, torch.long) |
|
self.assertEqual(batch["inputs"].shape, torch.Size([8, 6])) |
|
|
|
|
|
features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features) |
|
self.assertTrue(batch["labels"].equal(torch.tensor([[0, 1, 2]] * 8))) |
|
self.assertEqual(batch["labels"].dtype, torch.long) |
|
self.assertEqual(batch["inputs"].shape, torch.Size([8, 6])) |
|
|
|
|
|
features = [{"label": i, "inputs": np.random.randint(0, 10, [10])} for i in range(8)] |
|
batch = default_data_collator(features) |
|
self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8))))) |
|
self.assertEqual(batch["labels"].dtype, torch.long) |
|
self.assertEqual(batch["inputs"].shape, torch.Size([8, 10])) |
|
|
|
|
|
features = [{"label": torch.tensor(i), "inputs": np.random.randint(0, 10, [10])} for i in range(8)] |
|
batch = default_data_collator(features) |
|
self.assertEqual(batch["labels"].dtype, torch.long) |
|
self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8))))) |
|
self.assertEqual(batch["labels"].dtype, torch.long) |
|
self.assertEqual(batch["inputs"].shape, torch.Size([8, 10])) |
|
|
|
def test_default_classification_and_regression(self): |
|
data_collator = default_data_collator |
|
|
|
features = [{"input_ids": [0, 1, 2, 3, 4], "label": i} for i in range(4)] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["labels"].dtype, torch.long) |
|
|
|
features = [{"input_ids": [0, 1, 2, 3, 4], "label": float(i)} for i in range(4)] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["labels"].dtype, torch.float) |
|
|
|
def test_default_with_no_labels(self): |
|
features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features) |
|
self.assertTrue("labels" not in batch) |
|
self.assertEqual(batch["inputs"].shape, torch.Size([8, 6])) |
|
|
|
|
|
features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features) |
|
self.assertTrue("labels" not in batch) |
|
self.assertEqual(batch["inputs"].shape, torch.Size([8, 6])) |
|
|
|
def test_data_collator_with_padding(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}] |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10])) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8])) |
|
|
|
def test_data_collator_with_flattening(self): |
|
features = [ |
|
{"input_ids": [10, 11, 12]}, |
|
{"input_ids": [20, 21, 22, 23, 24, 25]}, |
|
{"input_ids": [30, 31, 32, 33, 34, 35, 36]}, |
|
] |
|
|
|
data_collator = DataCollatorWithFlattening(return_tensors="pt") |
|
batch = data_collator(features) |
|
|
|
for unexpected_key in [ |
|
"attention_mask", |
|
"cu_seq_lens_k", |
|
"cu_seq_lens_q", |
|
"max_length_k", |
|
"max_length_q", |
|
"seq_idx", |
|
]: |
|
self.assertNotIn(unexpected_key, batch) |
|
self.assertIn("position_ids", batch) |
|
|
|
self.assertEqual(batch["input_ids"].shape, torch.Size([1, 16])) |
|
self.assertEqual( |
|
batch["input_ids"][0].tolist(), [10, 11, 12, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 35, 36] |
|
) |
|
self.assertEqual(batch["position_ids"].shape, torch.Size([1, 16])) |
|
self.assertEqual(batch["position_ids"][0].tolist(), [0, 1, 2, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6]) |
|
|
|
def test_data_collator_with_flattening_flash_attn_kwargs(self): |
|
features = [ |
|
{"input_ids": [10, 11, 12]}, |
|
{"input_ids": [20, 21, 22, 23, 24, 25]}, |
|
{"input_ids": [30, 31, 32, 33, 34, 35, 36]}, |
|
] |
|
data_collator = DataCollatorWithFlattening(return_tensors="pt", return_flash_attn_kwargs=True) |
|
batch = data_collator(features) |
|
|
|
for unexpected_key in [ |
|
"attention_mask", |
|
"seq_idx", |
|
]: |
|
self.assertNotIn(unexpected_key, batch) |
|
for expected_key in [ |
|
"position_ids", |
|
"cu_seq_lens_k", |
|
"cu_seq_lens_q", |
|
"max_length_k", |
|
"max_length_q", |
|
]: |
|
self.assertIn(expected_key, batch) |
|
|
|
self.assertEqual(batch["input_ids"].shape, torch.Size([1, 16])) |
|
self.assertEqual( |
|
batch["input_ids"][0].tolist(), [10, 11, 12, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 35, 36] |
|
) |
|
self.assertEqual(batch["position_ids"].shape, torch.Size([1, 16])) |
|
self.assertEqual(batch["position_ids"][0].tolist(), [0, 1, 2, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6]) |
|
|
|
self.assertEqual(batch["cu_seq_lens_k"].shape, torch.Size([4])) |
|
self.assertEqual(batch["cu_seq_lens_k"].tolist(), [0, 3, 9, 16]) |
|
self.assertEqual(batch["cu_seq_lens_q"].shape, torch.Size([4])) |
|
self.assertEqual(batch["cu_seq_lens_q"].tolist(), [0, 3, 9, 16]) |
|
|
|
self.assertEqual(batch["max_length_k"], 7) |
|
self.assertEqual(batch["max_length_q"], 7) |
|
|
|
def test_data_collator_with_flattening_seq_idx(self): |
|
features = [ |
|
{"input_ids": [10, 11, 12]}, |
|
{"input_ids": [20, 21, 22, 23, 24, 25]}, |
|
{"input_ids": [30, 31, 32, 33, 34, 35, 36]}, |
|
] |
|
data_collator = DataCollatorWithFlattening(return_tensors="pt", return_seq_idx=True) |
|
batch = data_collator(features) |
|
|
|
for unexpected_key in [ |
|
"attention_mask", |
|
"cu_seq_lens_k", |
|
"cu_seq_lens_q", |
|
"max_length_k", |
|
"max_length_q", |
|
]: |
|
self.assertNotIn(unexpected_key, batch) |
|
for expected_key in [ |
|
"position_ids", |
|
"seq_idx", |
|
]: |
|
self.assertIn(expected_key, batch) |
|
|
|
self.assertEqual(batch["input_ids"].shape, torch.Size([1, 16])) |
|
self.assertEqual( |
|
batch["input_ids"][0].tolist(), [10, 11, 12, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 35, 36] |
|
) |
|
self.assertEqual(batch["position_ids"].shape, torch.Size([1, 16])) |
|
self.assertEqual(batch["position_ids"][0].tolist(), [0, 1, 2, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6]) |
|
self.assertEqual(batch["seq_idx"].shape, batch["input_ids"].shape) |
|
self.assertEqual(batch["seq_idx"][0].tolist(), [0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]) |
|
|
|
def test_data_collator_for_token_classification(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": [0, 1, 2], "labels": [0, 1, 2]}, |
|
{"input_ids": [0, 1, 2, 3, 4, 5], "labels": [0, 1, 2, 3, 4, 5]}, |
|
] |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-100] * 3) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, padding="max_length", max_length=10) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10])) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 10])) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8])) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 8])) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3) |
|
|
|
for feature in features: |
|
feature.pop("labels") |
|
|
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
|
|
def test_data_collator_for_token_classification_works_with_pt_tensors(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": torch.tensor([0, 1, 2]), "labels": torch.tensor([0, 1, 2])}, |
|
{"input_ids": torch.tensor([0, 1, 2, 3, 4, 5]), "labels": torch.tensor([0, 1, 2, 3, 4, 5])}, |
|
] |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-100] * 3) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, padding="max_length", max_length=10) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10])) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 10])) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8])) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 8])) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3) |
|
|
|
for feature in features: |
|
feature.pop("labels") |
|
|
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
|
|
def _test_data_collator_for_seq2seq(self, to_torch): |
|
def create_features(to_torch): |
|
if to_torch: |
|
features = [ |
|
{"input_ids": torch.tensor(list(range(3))), "labels": torch.tensor(list(range(3)))}, |
|
{"input_ids": torch.tensor(list(range(6))), "labels": torch.tensor(list(range(6)))}, |
|
] |
|
else: |
|
features = [ |
|
{"input_ids": list(range(3)), "labels": list(range(3))}, |
|
{"input_ids": list(range(6)), "labels": list(range(6))}, |
|
] |
|
return features |
|
|
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = create_features(to_torch) |
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.LONGEST) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), list(range(3)) + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["input_ids"][1].tolist(), list(range(6))) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["labels"][0].tolist(), list(range(3)) + [-100] * 3) |
|
self.assertEqual(batch["labels"][1].tolist(), list(range(6))) |
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.MAX_LENGTH, max_length=7) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 7])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), list(range(3)) + [tokenizer.pad_token_id] * 4) |
|
self.assertEqual(batch["input_ids"][1].tolist(), list(range(6)) + [tokenizer.pad_token_id] * 1) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 7])) |
|
self.assertEqual(batch["labels"][0].tolist(), list(range(3)) + [-100] * 4) |
|
self.assertEqual(batch["labels"][1].tolist(), list(range(6)) + [-100] * 1) |
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.DO_NOT_PAD) |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(features) |
|
batch = data_collator([features[0], features[0]]) |
|
input_ids = features[0]["input_ids"] if not to_torch else features[0]["input_ids"].tolist() |
|
labels = features[0]["labels"] if not to_torch else features[0]["labels"].tolist() |
|
self.assertEqual(batch["input_ids"][0].tolist(), input_ids) |
|
self.assertEqual(batch["input_ids"][1].tolist(), input_ids) |
|
self.assertEqual(batch["labels"][0].tolist(), labels) |
|
self.assertEqual(batch["labels"][1].tolist(), labels) |
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.LONGEST, pad_to_multiple_of=8) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8])) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 8])) |
|
|
|
|
|
features = create_features(to_torch) |
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.LONGEST, label_pad_token_id=-1) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), list(range(3)) + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["input_ids"][1].tolist(), list(range(6))) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["labels"][0].tolist(), list(range(3)) + [-1] * 3) |
|
self.assertEqual(batch["labels"][1].tolist(), list(range(6))) |
|
|
|
for feature in features: |
|
feature.pop("labels") |
|
|
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), list(range(3)) + [tokenizer.pad_token_id] * 3) |
|
|
|
def test_data_collator_for_seq2seq_with_lists(self): |
|
self._test_data_collator_for_seq2seq(to_torch=False) |
|
|
|
def test_data_collator_for_seq2seq_with_pt(self): |
|
self._test_data_collator_for_seq2seq(to_torch=True) |
|
|
|
def _test_no_pad_and_pad(self, no_pad_features, pad_features): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False) |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False, pad_to_multiple_of=8) |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 16))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 16))) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 16))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 16))) |
|
|
|
tokenizer.pad_token = None |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False) |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(pad_features) |
|
|
|
set_seed(42) |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer) |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(torch.any(masked_tokens)) |
|
self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist())) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(torch.any(masked_tokens)) |
|
self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist())) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8) |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 16))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 16))) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(torch.any(masked_tokens)) |
|
self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist())) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 16))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 16))) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(torch.any(masked_tokens)) |
|
self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist())) |
|
|
|
def test_data_collator_for_language_modeling(self): |
|
no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
self._test_no_pad_and_pad(no_pad_features, pad_features) |
|
|
|
no_pad_features = [list(range(10)), list(range(10))] |
|
pad_features = [list(range(5)), list(range(10))] |
|
self._test_no_pad_and_pad(no_pad_features, pad_features) |
|
|
|
def test_data_collator_for_language_modeling_with_seed(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [{"input_ids": list(range(1000))}, {"input_ids": list(range(1000))}] |
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, seed=42) |
|
batch_1 = data_collator(features) |
|
self.assertEqual(batch_1["input_ids"].shape, torch.Size((2, 1000))) |
|
self.assertEqual(batch_1["labels"].shape, torch.Size((2, 1000))) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, seed=42) |
|
batch_2 = data_collator(features) |
|
self.assertEqual(batch_2["input_ids"].shape, torch.Size((2, 1000))) |
|
self.assertEqual(batch_2["labels"].shape, torch.Size((2, 1000))) |
|
|
|
self.assertTrue(torch.all(batch_1["input_ids"] == batch_2["input_ids"])) |
|
self.assertTrue(torch.all(batch_1["labels"] == batch_2["labels"])) |
|
|
|
|
|
features = [{"input_ids": list(range(1000))} for _ in range(10)] |
|
dataloader = torch.utils.data.DataLoader( |
|
features, |
|
batch_size=2, |
|
num_workers=2, |
|
generator=torch.Generator().manual_seed(42), |
|
collate_fn=DataCollatorForLanguageModeling(tokenizer, seed=42), |
|
) |
|
|
|
batch_3_input_ids = [] |
|
batch_3_labels = [] |
|
for batch in dataloader: |
|
batch_3_input_ids.append(batch["input_ids"]) |
|
batch_3_labels.append(batch["labels"]) |
|
|
|
batch_3_input_ids = torch.stack(batch_3_input_ids) |
|
batch_3_labels = torch.stack(batch_3_labels) |
|
self.assertEqual(batch_3_input_ids.shape, torch.Size((5, 2, 1000))) |
|
self.assertEqual(batch_3_labels.shape, torch.Size((5, 2, 1000))) |
|
|
|
dataloader = torch.utils.data.DataLoader( |
|
features, |
|
batch_size=2, |
|
num_workers=2, |
|
collate_fn=DataCollatorForLanguageModeling(tokenizer, seed=42), |
|
) |
|
|
|
batch_4_input_ids = [] |
|
batch_4_labels = [] |
|
for batch in dataloader: |
|
batch_4_input_ids.append(batch["input_ids"]) |
|
batch_4_labels.append(batch["labels"]) |
|
batch_4_input_ids = torch.stack(batch_4_input_ids) |
|
batch_4_labels = torch.stack(batch_4_labels) |
|
self.assertEqual(batch_4_input_ids.shape, torch.Size((5, 2, 1000))) |
|
self.assertEqual(batch_4_labels.shape, torch.Size((5, 2, 1000))) |
|
|
|
self.assertTrue(torch.all(batch_3_input_ids == batch_4_input_ids)) |
|
self.assertTrue(torch.all(batch_3_labels == batch_4_labels)) |
|
|
|
|
|
dataloader = torch.utils.data.DataLoader( |
|
features, |
|
batch_size=2, |
|
num_workers=2, |
|
collate_fn=DataCollatorForLanguageModeling(tokenizer, seed=43), |
|
) |
|
|
|
batch_5_input_ids = [] |
|
batch_5_labels = [] |
|
for batch in dataloader: |
|
batch_5_input_ids.append(batch["input_ids"]) |
|
batch_5_labels.append(batch["labels"]) |
|
batch_5_input_ids = torch.stack(batch_5_input_ids) |
|
batch_5_labels = torch.stack(batch_5_labels) |
|
self.assertEqual(batch_5_input_ids.shape, torch.Size((5, 2, 1000))) |
|
self.assertEqual(batch_5_labels.shape, torch.Size((5, 2, 1000))) |
|
|
|
self.assertFalse(torch.all(batch_3_input_ids == batch_5_input_ids)) |
|
self.assertFalse(torch.all(batch_3_labels == batch_5_labels)) |
|
|
|
def test_data_collator_for_whole_word_mask(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForWholeWordMask(tokenizer, return_tensors="pt") |
|
|
|
features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
|
|
features = [{"input_ids": np.arange(10)}, {"input_ids": np.arange(10)}] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
def test_data_collator_for_whole_word_mask_with_seed(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [{"input_ids": list(range(1000))}, {"input_ids": list(range(1000))}] |
|
|
|
|
|
data_collator = DataCollatorForWholeWordMask(tokenizer, seed=42) |
|
batch_1 = data_collator(features) |
|
self.assertEqual(batch_1["input_ids"].shape, torch.Size((2, 1000))) |
|
self.assertEqual(batch_1["labels"].shape, torch.Size((2, 1000))) |
|
|
|
data_collator = DataCollatorForWholeWordMask(tokenizer, seed=42) |
|
batch_2 = data_collator(features) |
|
self.assertEqual(batch_2["input_ids"].shape, torch.Size((2, 1000))) |
|
self.assertEqual(batch_2["labels"].shape, torch.Size((2, 1000))) |
|
|
|
self.assertTrue(torch.all(batch_1["input_ids"] == batch_2["input_ids"])) |
|
self.assertTrue(torch.all(batch_1["labels"] == batch_2["labels"])) |
|
|
|
|
|
features = [{"input_ids": list(range(1000))} for _ in range(10)] |
|
dataloader = torch.utils.data.DataLoader( |
|
features, |
|
batch_size=2, |
|
num_workers=2, |
|
generator=torch.Generator().manual_seed(42), |
|
collate_fn=DataCollatorForWholeWordMask(tokenizer, seed=42), |
|
) |
|
|
|
batch_3_input_ids = [] |
|
batch_3_labels = [] |
|
for batch in dataloader: |
|
batch_3_input_ids.append(batch["input_ids"]) |
|
batch_3_labels.append(batch["labels"]) |
|
|
|
batch_3_input_ids = torch.stack(batch_3_input_ids) |
|
batch_3_labels = torch.stack(batch_3_labels) |
|
self.assertEqual(batch_3_input_ids.shape, torch.Size((5, 2, 1000))) |
|
self.assertEqual(batch_3_labels.shape, torch.Size((5, 2, 1000))) |
|
|
|
dataloader = torch.utils.data.DataLoader( |
|
features, |
|
batch_size=2, |
|
num_workers=2, |
|
collate_fn=DataCollatorForWholeWordMask(tokenizer, seed=42), |
|
) |
|
|
|
batch_4_input_ids = [] |
|
batch_4_labels = [] |
|
for batch in dataloader: |
|
batch_4_input_ids.append(batch["input_ids"]) |
|
batch_4_labels.append(batch["labels"]) |
|
batch_4_input_ids = torch.stack(batch_4_input_ids) |
|
batch_4_labels = torch.stack(batch_4_labels) |
|
self.assertEqual(batch_4_input_ids.shape, torch.Size((5, 2, 1000))) |
|
self.assertEqual(batch_4_labels.shape, torch.Size((5, 2, 1000))) |
|
|
|
self.assertTrue(torch.all(batch_3_input_ids == batch_4_input_ids)) |
|
self.assertTrue(torch.all(batch_3_labels == batch_4_labels)) |
|
|
|
|
|
dataloader = torch.utils.data.DataLoader( |
|
features, |
|
batch_size=2, |
|
num_workers=2, |
|
collate_fn=DataCollatorForWholeWordMask(tokenizer, seed=43), |
|
) |
|
|
|
batch_5_input_ids = [] |
|
batch_5_labels = [] |
|
for batch in dataloader: |
|
batch_5_input_ids.append(batch["input_ids"]) |
|
batch_5_labels.append(batch["labels"]) |
|
batch_5_input_ids = torch.stack(batch_5_input_ids) |
|
batch_5_labels = torch.stack(batch_5_labels) |
|
self.assertEqual(batch_5_input_ids.shape, torch.Size((5, 2, 1000))) |
|
self.assertEqual(batch_5_labels.shape, torch.Size((5, 2, 1000))) |
|
|
|
self.assertFalse(torch.all(batch_3_input_ids == batch_5_input_ids)) |
|
self.assertFalse(torch.all(batch_3_labels == batch_5_labels)) |
|
|
|
def test_plm(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
|
|
data_collator = DataCollatorForPermutationLanguageModeling(tokenizer) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertIsInstance(batch, dict) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 10, 10))) |
|
self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 10, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
batch = data_collator(no_pad_features) |
|
self.assertIsInstance(batch, dict) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 10, 10))) |
|
self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 10, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
example = [np.random.randint(0, 5, [5])] |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(example) |
|
|
|
def test_nsp(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i} |
|
for i in range(2) |
|
] |
|
data_collator = DataCollatorForLanguageModeling(tokenizer) |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 5))) |
|
self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 5))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 5))) |
|
self.assertEqual(batch["next_sentence_label"].shape, torch.Size((2,))) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8) |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 8))) |
|
self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 8))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 8))) |
|
self.assertEqual(batch["next_sentence_label"].shape, torch.Size((2,))) |
|
|
|
def test_sop(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{ |
|
"input_ids": torch.tensor([0, 1, 2, 3, 4]), |
|
"token_type_ids": torch.tensor([0, 1, 2, 3, 4]), |
|
"sentence_order_label": i, |
|
} |
|
for i in range(2) |
|
] |
|
data_collator = DataCollatorForLanguageModeling(tokenizer) |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 5))) |
|
self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 5))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 5))) |
|
self.assertEqual(batch["sentence_order_label"].shape, torch.Size((2,))) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8) |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 8))) |
|
self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 8))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 8))) |
|
self.assertEqual(batch["sentence_order_label"].shape, torch.Size((2,))) |
|
|
|
|
|
@require_torch |
|
class DataCollatorImmutabilityTest(unittest.TestCase): |
|
def setUp(self): |
|
self.tmpdirname = tempfile.mkdtemp() |
|
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"] |
|
self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt") |
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmpdirname) |
|
|
|
def _turn_to_none(self, item): |
|
"""used to convert `item` to `None` type""" |
|
return None |
|
|
|
def _validate_original_data_against_collated_data(self, collator, original_data, batch_data): |
|
|
|
collator(batch_data) |
|
|
|
|
|
|
|
for original, batch in zip(original_data, batch_data): |
|
for original_val, batch_val in zip(original.values(), batch.values()): |
|
if isinstance(original_val, (np.ndarray, torch.Tensor)): |
|
self.assertEqual(original_val.tolist(), batch_val.tolist()) |
|
else: |
|
self.assertEqual(original_val, batch_val) |
|
|
|
def _validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
self, collator, base_data, input_key, input_datatype, label_key, label_datatype, ignore_label=False |
|
): |
|
|
|
features_original = [ |
|
{label_key: label_datatype(sample[label_key]), input_key: input_datatype(sample[input_key])} |
|
for sample in base_data |
|
] |
|
features_batch = [ |
|
{label_key: label_datatype(sample[label_key]), input_key: input_datatype(sample[input_key])} |
|
for sample in base_data |
|
] |
|
|
|
|
|
if ignore_label: |
|
for original, batch in zip(features_original, features_batch): |
|
original.pop(label_key) |
|
batch.pop(label_key) |
|
|
|
self._validate_original_data_against_collated_data( |
|
collator=collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
def test_default_collator_immutability(self): |
|
features_base_single_label = [{"label": i, "inputs": (0, 1, 2, 3, 4, 5)} for i in range(4)] |
|
features_base_multiple_labels = [{"label": (0, 1, 2), "inputs": (0, 1, 2, 3, 4, 5)} for i in range(4)] |
|
|
|
for datatype_input, datatype_label in [ |
|
(list, int), |
|
(list, float), |
|
(np.array, int), |
|
(np.array, torch.tensor), |
|
(list, self._turn_to_none), |
|
]: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=default_data_collator, |
|
base_data=features_base_single_label, |
|
input_key="inputs", |
|
input_datatype=datatype_input, |
|
label_key="label", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
for datatype_input, datatype_label in [(list, list), (list, self._turn_to_none)]: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=default_data_collator, |
|
base_data=features_base_multiple_labels, |
|
input_key="inputs", |
|
input_datatype=datatype_input, |
|
label_key="label", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
features_base_single_label_alt = [{"input_ids": (0, 1, 2, 3, 4), "label": float(i)} for i in range(4)] |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=default_data_collator, |
|
base_data=features_base_single_label_alt, |
|
input_key="input_ids", |
|
input_datatype=list, |
|
label_key="label", |
|
label_datatype=float, |
|
) |
|
|
|
def test_with_padding_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_original = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}] |
|
features_batch = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}] |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10) |
|
self._validate_original_data_against_collated_data( |
|
collator=data_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) |
|
self._validate_original_data_against_collated_data( |
|
collator=data_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
def test_for_token_classification_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_base = [ |
|
{"input_ids": (0, 1, 2), "labels": (0, 1, 2)}, |
|
{"input_ids": (0, 1, 2, 3, 4, 5), "labels": (0, 1, 2, 3, 4, 5)}, |
|
] |
|
token_classification_collators = [ |
|
DataCollatorForTokenClassification(tokenizer), |
|
DataCollatorForTokenClassification(tokenizer, padding="max_length", max_length=10), |
|
DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8), |
|
DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1), |
|
] |
|
|
|
for datatype_input, datatype_label in [(list, list), (torch.tensor, torch.tensor)]: |
|
for collator in token_classification_collators: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=collator, |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=token_classification_collators[-1], |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
def test_seq2seq_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_base = [ |
|
{"input_ids": list(range(3)), "labels": list(range(3))}, |
|
{"input_ids": list(range(6)), "labels": list(range(6))}, |
|
] |
|
seq2seq_collators = [ |
|
DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.LONGEST), |
|
DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.MAX_LENGTH, max_length=7), |
|
DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.LONGEST, pad_to_multiple_of=8), |
|
DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.LONGEST, label_pad_token_id=-1), |
|
] |
|
|
|
for datatype_input, datatype_label in [(list, list), (torch.tensor, torch.tensor)]: |
|
for collator in seq2seq_collators: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=collator, |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=seq2seq_collators[-1], |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
features_base_no_pad = [ |
|
{"input_ids": list(range(3)), "labels": list(range(3))}, |
|
{"input_ids": list(range(3)), "labels": list(range(3))}, |
|
] |
|
seq2seq_no_padding_collator = DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.DO_NOT_PAD) |
|
for datatype_input, datatype_label in [(list, list), (torch.tensor, torch.tensor)]: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=seq2seq_no_padding_collator, |
|
base_data=features_base_no_pad, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
def test_language_modelling_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_base_no_pad = [ |
|
{"input_ids": tuple(range(10)), "labels": (1,)}, |
|
{"input_ids": tuple(range(10)), "labels": (1,)}, |
|
] |
|
features_base_pad = [ |
|
{"input_ids": tuple(range(5)), "labels": (1,)}, |
|
{"input_ids": tuple(range(5)), "labels": (1,)}, |
|
] |
|
lm_collators = [ |
|
DataCollatorForLanguageModeling(tokenizer, mlm=False), |
|
DataCollatorForLanguageModeling(tokenizer, mlm=False, pad_to_multiple_of=8), |
|
DataCollatorForLanguageModeling(tokenizer), |
|
DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8), |
|
] |
|
|
|
for datatype_input, datatype_label in [(list, list), (torch.tensor, torch.tensor)]: |
|
for collator in lm_collators: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=collator, |
|
base_data=features_base_no_pad, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=collator, |
|
base_data=features_base_pad, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
def test_whole_world_masking_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_base = [ |
|
{"input_ids": list(range(10)), "labels": (1,)}, |
|
{"input_ids": list(range(10)), "labels": (1,)}, |
|
] |
|
whole_word_masking_collator = DataCollatorForWholeWordMask(tokenizer, return_tensors="pt") |
|
|
|
for datatype_input, datatype_label in [(list, list), (np.array, np.array)]: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=whole_word_masking_collator, |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
def test_permutation_language_modelling_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
plm_collator = DataCollatorForPermutationLanguageModeling(tokenizer) |
|
|
|
no_pad_features_original = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
no_pad_features_batch = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
self._validate_original_data_against_collated_data( |
|
collator=plm_collator, original_data=no_pad_features_original, batch_data=no_pad_features_batch |
|
) |
|
|
|
pad_features_original = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
pad_features_batch = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
self._validate_original_data_against_collated_data( |
|
collator=plm_collator, original_data=pad_features_original, batch_data=pad_features_batch |
|
) |
|
|
|
def test_next_sentence_prediction_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_original = [ |
|
{"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i} |
|
for i in range(2) |
|
] |
|
features_batch = [ |
|
{"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i} |
|
for i in range(2) |
|
] |
|
|
|
nsp_collator = DataCollatorForLanguageModeling(tokenizer) |
|
self._validate_original_data_against_collated_data( |
|
collator=nsp_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
nsp_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8) |
|
self._validate_original_data_against_collated_data( |
|
collator=nsp_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
def test_sentence_order_prediction_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_original = [ |
|
{ |
|
"input_ids": torch.tensor([0, 1, 2, 3, 4]), |
|
"token_type_ids": torch.tensor([0, 1, 2, 3, 4]), |
|
"sentence_order_label": i, |
|
} |
|
for i in range(2) |
|
] |
|
features_batch = [ |
|
{ |
|
"input_ids": torch.tensor([0, 1, 2, 3, 4]), |
|
"token_type_ids": torch.tensor([0, 1, 2, 3, 4]), |
|
"sentence_order_label": i, |
|
} |
|
for i in range(2) |
|
] |
|
|
|
sop_collator = DataCollatorForLanguageModeling(tokenizer) |
|
self._validate_original_data_against_collated_data( |
|
collator=sop_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
sop_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8) |
|
self._validate_original_data_against_collated_data( |
|
collator=sop_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
|
|
@require_tf |
|
class TFDataCollatorIntegrationTest(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
self.tmpdirname = tempfile.mkdtemp() |
|
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"] |
|
self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt") |
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmpdirname) |
|
|
|
def test_default_with_dict(self): |
|
features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].numpy().tolist(), list(range(8))) |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
self.assertEqual(batch["inputs"].shape.as_list(), [8, 6]) |
|
|
|
|
|
features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].numpy().tolist(), ([[0, 1, 2]] * 8)) |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
self.assertEqual(batch["inputs"].shape.as_list(), [8, 6]) |
|
|
|
|
|
features = [{"label": i, "inputs": np.random.randint(0, 10, [10])} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].numpy().tolist(), (list(range(8)))) |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
self.assertEqual(batch["inputs"].shape.as_list(), [8, 10]) |
|
|
|
|
|
features = [{"label": np.array(i), "inputs": np.random.randint(0, 10, [10])} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
self.assertEqual(batch["labels"].numpy().tolist(), list(range(8))) |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
self.assertEqual(batch["inputs"].shape.as_list(), [8, 10]) |
|
|
|
def test_numpy_dtype_preservation(self): |
|
data_collator = default_data_collator |
|
|
|
|
|
features = [{"input_ids": np.array([0, 1, 2, 3, 4]), "label": np.int64(i)} for i in range(4)] |
|
batch = data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
|
|
def test_default_classification_and_regression(self): |
|
data_collator = default_data_collator |
|
|
|
features = [{"input_ids": [0, 1, 2, 3, 4], "label": i} for i in range(4)] |
|
batch = data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
|
|
features = [{"input_ids": [0, 1, 2, 3, 4], "label": float(i)} for i in range(4)] |
|
batch = data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].dtype, tf.float32) |
|
|
|
def test_default_with_no_labels(self): |
|
features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="tf") |
|
self.assertTrue("labels" not in batch) |
|
self.assertEqual(batch["inputs"].shape.as_list(), [8, 6]) |
|
|
|
|
|
features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="tf") |
|
self.assertTrue("labels" not in batch) |
|
self.assertEqual(batch["inputs"].shape.as_list(), [8, 6]) |
|
|
|
def test_data_collator_with_padding(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}] |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["input_ids"][0].numpy().tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, [2, 8]) |
|
|
|
def test_data_collator_for_token_classification(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": [0, 1, 2], "labels": [0, 1, 2]}, |
|
{"input_ids": [0, 1, 2, 3, 4, 5], "labels": [0, 1, 2, 3, 4, 5]}, |
|
] |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["input_ids"][0].numpy().tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["labels"][0].numpy().tolist(), [0, 1, 2] + [-100] * 3) |
|
|
|
data_collator = DataCollatorForTokenClassification( |
|
tokenizer, padding="max_length", max_length=10, return_tensors="tf" |
|
) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 8]) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["input_ids"][0].numpy().tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["labels"][0].numpy().tolist(), [0, 1, 2] + [-1] * 3) |
|
|
|
def test_data_collator_for_seq2seq(self): |
|
def create_features(): |
|
return [ |
|
{"input_ids": list(range(3)), "labels": list(range(3))}, |
|
{"input_ids": list(range(6)), "labels": list(range(6))}, |
|
] |
|
|
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = create_features() |
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.LONGEST, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["input_ids"][0].numpy().tolist(), list(range(3)) + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["input_ids"][1].numpy().tolist(), list(range(6))) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["labels"][0].numpy().tolist(), list(range(3)) + [-100] * 3) |
|
self.assertEqual(batch["labels"][1].numpy().tolist(), list(range(6))) |
|
|
|
data_collator = DataCollatorForSeq2Seq( |
|
tokenizer, padding=PaddingStrategy.MAX_LENGTH, max_length=7, return_tensors="tf" |
|
) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 7]) |
|
self.assertEqual(batch["input_ids"][0].numpy().tolist(), list(range(3)) + [tokenizer.pad_token_id] * 4) |
|
self.assertEqual(batch["input_ids"][1].numpy().tolist(), list(range(6)) + [tokenizer.pad_token_id] * 1) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 7]) |
|
self.assertEqual(batch["labels"][0].numpy().tolist(), list(range(3)) + [-100] * 4) |
|
self.assertEqual(batch["labels"][1].numpy().tolist(), list(range(6)) + [-100] * 1) |
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.DO_NOT_PAD, return_tensors="tf") |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(features) |
|
batch = data_collator([features[0], features[0]]) |
|
self.assertEqual(batch["input_ids"][0].numpy().tolist(), features[0]["input_ids"]) |
|
self.assertEqual(batch["input_ids"][1].numpy().tolist(), features[0]["input_ids"]) |
|
self.assertEqual(batch["labels"][0].numpy().tolist(), features[0]["labels"]) |
|
self.assertEqual(batch["labels"][1].numpy().tolist(), features[0]["labels"]) |
|
|
|
data_collator = DataCollatorForSeq2Seq( |
|
tokenizer, padding=PaddingStrategy.LONGEST, pad_to_multiple_of=8, return_tensors="tf" |
|
) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 8]) |
|
|
|
|
|
features = create_features() |
|
|
|
data_collator = DataCollatorForSeq2Seq( |
|
tokenizer, padding=PaddingStrategy.LONGEST, label_pad_token_id=-1, return_tensors="tf" |
|
) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["input_ids"][0].numpy().tolist(), list(range(3)) + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["input_ids"][1].numpy().tolist(), list(range(6))) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["labels"][0].numpy().tolist(), list(range(3)) + [-1] * 3) |
|
self.assertEqual(batch["labels"][1].numpy().tolist(), list(range(6))) |
|
|
|
for feature in features: |
|
feature.pop("labels") |
|
|
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["input_ids"][0].numpy().tolist(), list(range(3)) + [tokenizer.pad_token_id] * 3) |
|
|
|
def _test_no_pad_and_pad(self, no_pad_features, pad_features): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False, return_tensors="tf") |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
data_collator = DataCollatorForLanguageModeling( |
|
tokenizer, mlm=False, pad_to_multiple_of=8, return_tensors="tf" |
|
) |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 16]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 16]) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 16]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 16]) |
|
|
|
tokenizer.pad_token = None |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False, return_tensors="tf") |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(pad_features) |
|
|
|
set_seed(42) |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="tf") |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(tf.reduce_any(masked_tokens)) |
|
|
|
|
|
batch = data_collator(pad_features, return_tensors="tf") |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(tf.reduce_any(masked_tokens)) |
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 16]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 16]) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(tf.reduce_any(masked_tokens)) |
|
|
|
|
|
batch = data_collator(pad_features, return_tensors="tf") |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 16]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 16]) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(tf.reduce_any(masked_tokens)) |
|
|
|
|
|
def test_probability_sum_error(self): |
|
"""Test that the sum of mask_replace_prob and random_replace_prob exceeding 1 raises an error.""" |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
with self.assertRaises(ValueError): |
|
DataCollatorForLanguageModeling(tokenizer=tokenizer, mask_replace_prob=0.9, random_replace_prob=0.2) |
|
|
|
def test_all_mask_replacement(self): |
|
"""Test behavior when mask_replace_prob=1.""" |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
|
|
collator = DataCollatorForLanguageModeling( |
|
tokenizer=tokenizer, mask_replace_prob=1, random_replace_prob=0, return_tensors="pt" |
|
) |
|
|
|
inputs = torch.tensor([0, 1, 2, 3, 4, 5]) |
|
features = [{"input_ids": inputs} for _ in range(8)] |
|
batch = collator(features) |
|
|
|
|
|
self.assertTrue(torch.all((batch["input_ids"] == inputs) | (batch["input_ids"] == tokenizer.mask_token_id))) |
|
|
|
|
|
collator = DataCollatorForLanguageModeling( |
|
tokenizer=tokenizer, mask_replace_prob=1, random_replace_prob=0, return_tensors="tf" |
|
) |
|
inputs = tf.constant([0, 1, 2, 3, 4, 5]) |
|
features = [{"input_ids": inputs} for _ in range(8)] |
|
batch = collator(features) |
|
|
|
|
|
self.assertTrue( |
|
tf.reduce_all( |
|
(batch["input_ids"] == tf.cast(inputs, tf.int64)) | (batch["input_ids"] == tokenizer.mask_token_id) |
|
) |
|
) |
|
|
|
|
|
collator = DataCollatorForLanguageModeling( |
|
tokenizer=tokenizer, mask_replace_prob=1, random_replace_prob=0, return_tensors="np" |
|
) |
|
inputs = np.array([0, 1, 2, 3, 4, 5]) |
|
features = [{"input_ids": inputs} for _ in range(8)] |
|
batch = collator(features) |
|
|
|
|
|
self.assertTrue(np.all((batch["input_ids"] == inputs) | (batch["input_ids"] == tokenizer.mask_token_id))) |
|
|
|
def test_data_collator_for_language_modeling(self): |
|
no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
self._test_no_pad_and_pad(no_pad_features, pad_features) |
|
|
|
no_pad_features = [list(range(10)), list(range(10))] |
|
pad_features = [list(range(5)), list(range(10))] |
|
self._test_no_pad_and_pad(no_pad_features, pad_features) |
|
|
|
def test_data_collator_for_language_modeling_with_seed(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [{"input_ids": list(range(1000))}, {"input_ids": list(range(1000))}] |
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, seed=42, return_tensors="tf") |
|
batch_1 = data_collator(features) |
|
self.assertEqual(batch_1["input_ids"].shape.as_list(), [2, 1000]) |
|
self.assertEqual(batch_1["labels"].shape.as_list(), [2, 1000]) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, seed=42, return_tensors="tf") |
|
batch_2 = data_collator(features) |
|
self.assertEqual(batch_2["input_ids"].shape.as_list(), [2, 1000]) |
|
self.assertEqual(batch_2["labels"].shape.as_list(), [2, 1000]) |
|
|
|
self.assertTrue(np.all(batch_1["input_ids"] == batch_2["input_ids"])) |
|
self.assertTrue(np.all(batch_1["labels"] == batch_2["labels"])) |
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, seed=43, return_tensors="tf") |
|
batch_3 = data_collator(features) |
|
self.assertEqual(batch_3["input_ids"].shape.as_list(), [2, 1000]) |
|
self.assertEqual(batch_3["labels"].shape.as_list(), [2, 1000]) |
|
|
|
self.assertFalse(np.all(batch_1["input_ids"] == batch_3["input_ids"])) |
|
self.assertFalse(np.all(batch_1["labels"] == batch_3["labels"])) |
|
|
|
def test_data_collator_for_whole_word_mask(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForWholeWordMask(tokenizer, return_tensors="tf") |
|
|
|
features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
|
|
features = [{"input_ids": np.arange(10)}, {"input_ids": np.arange(10)}] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
def test_data_collator_for_whole_word_mask_with_seed(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [{"input_ids": list(range(1000))}, {"input_ids": list(range(1000))}] |
|
|
|
|
|
data_collator = DataCollatorForWholeWordMask(tokenizer, seed=42, return_tensors="tf") |
|
batch_1 = data_collator(features) |
|
self.assertEqual(batch_1["input_ids"].shape.as_list(), [2, 1000]) |
|
self.assertEqual(batch_1["labels"].shape.as_list(), [2, 1000]) |
|
|
|
data_collator = DataCollatorForWholeWordMask(tokenizer, seed=42, return_tensors="tf") |
|
batch_2 = data_collator(features) |
|
self.assertEqual(batch_2["input_ids"].shape.as_list(), [2, 1000]) |
|
self.assertEqual(batch_2["labels"].shape.as_list(), [2, 1000]) |
|
|
|
self.assertTrue(np.all(batch_1["input_ids"] == batch_2["input_ids"])) |
|
self.assertTrue(np.all(batch_1["labels"] == batch_2["labels"])) |
|
|
|
|
|
data_collator = DataCollatorForWholeWordMask(tokenizer, seed=43, return_tensors="tf") |
|
batch_3 = data_collator(features) |
|
self.assertEqual(batch_3["input_ids"].shape.as_list(), [2, 1000]) |
|
self.assertEqual(batch_3["labels"].shape.as_list(), [2, 1000]) |
|
|
|
self.assertFalse(np.all(batch_1["input_ids"] == batch_3["input_ids"])) |
|
self.assertFalse(np.all(batch_1["labels"] == batch_3["labels"])) |
|
|
|
def test_plm(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
|
|
data_collator = DataCollatorForPermutationLanguageModeling(tokenizer, return_tensors="tf") |
|
|
|
batch = data_collator(pad_features) |
|
self.assertIsInstance(batch, dict) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["perm_mask"].shape.as_list(), [2, 10, 10]) |
|
self.assertEqual(batch["target_mapping"].shape.as_list(), [2, 10, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
batch = data_collator(no_pad_features) |
|
self.assertIsInstance(batch, dict) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["perm_mask"].shape.as_list(), [2, 10, 10]) |
|
self.assertEqual(batch["target_mapping"].shape.as_list(), [2, 10, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
example = [np.random.randint(0, 5, [5])] |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(example) |
|
|
|
def test_nsp(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i} |
|
for i in range(2) |
|
] |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="tf") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 5]) |
|
self.assertEqual(batch["token_type_ids"].shape.as_list(), [2, 5]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 5]) |
|
self.assertEqual(batch["next_sentence_label"].shape.as_list(), [2]) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["token_type_ids"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["next_sentence_label"].shape.as_list(), [2]) |
|
|
|
def test_sop(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{ |
|
"input_ids": tf.convert_to_tensor([0, 1, 2, 3, 4]), |
|
"token_type_ids": tf.convert_to_tensor([0, 1, 2, 3, 4]), |
|
"sentence_order_label": i, |
|
} |
|
for i in range(2) |
|
] |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="tf") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 5]) |
|
self.assertEqual(batch["token_type_ids"].shape.as_list(), [2, 5]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 5]) |
|
self.assertEqual(batch["sentence_order_label"].shape.as_list(), [2]) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["token_type_ids"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["sentence_order_label"].shape.as_list(), [2]) |
|
|
|
|
|
@require_tf |
|
class TFDataCollatorImmutabilityTest(unittest.TestCase): |
|
def setUp(self): |
|
self.tmpdirname = tempfile.mkdtemp() |
|
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"] |
|
self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt") |
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmpdirname) |
|
|
|
def _turn_to_none(self, item): |
|
"""used to convert `item` to `None` type""" |
|
return None |
|
|
|
def _validate_original_data_against_collated_data(self, collator, original_data, batch_data): |
|
|
|
collator(batch_data) |
|
|
|
|
|
|
|
for original, batch in zip(original_data, batch_data): |
|
for original_val, batch_val in zip(original.values(), batch.values()): |
|
if isinstance(original_val, np.ndarray): |
|
self.assertEqual(original_val.tolist(), batch_val.tolist()) |
|
elif isinstance(original_val, tf.Tensor): |
|
self.assertEqual(original_val.numpy().tolist(), batch_val.numpy().tolist()) |
|
else: |
|
self.assertEqual(original_val, batch_val) |
|
|
|
def _validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
self, collator, base_data, input_key, input_datatype, label_key, label_datatype, ignore_label=False |
|
): |
|
|
|
features_original = [ |
|
{label_key: label_datatype(sample[label_key]), input_key: input_datatype(sample[input_key])} |
|
for sample in base_data |
|
] |
|
features_batch = [ |
|
{label_key: label_datatype(sample[label_key]), input_key: input_datatype(sample[input_key])} |
|
for sample in base_data |
|
] |
|
|
|
|
|
if ignore_label: |
|
for original, batch in zip(features_original, features_batch): |
|
original.pop(label_key) |
|
batch.pop(label_key) |
|
|
|
self._validate_original_data_against_collated_data( |
|
collator=collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
def test_default_collator_immutability(self): |
|
features_base_single_label = [{"label": i, "inputs": (0, 1, 2, 3, 4, 5)} for i in range(4)] |
|
features_base_multiple_labels = [{"label": (0, 1, 2), "inputs": (0, 1, 2, 3, 4, 5)} for i in range(4)] |
|
|
|
for datatype_input, datatype_label in [ |
|
(list, int), |
|
(list, float), |
|
(np.array, int), |
|
(np.array, tf.constant), |
|
(list, self._turn_to_none), |
|
]: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=lambda x: default_data_collator(x, return_tensors="tf"), |
|
base_data=features_base_single_label, |
|
input_key="inputs", |
|
input_datatype=datatype_input, |
|
label_key="label", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
for datatype_input, datatype_label in [(list, list), (list, self._turn_to_none)]: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=lambda x: default_data_collator(x, return_tensors="tf"), |
|
base_data=features_base_multiple_labels, |
|
input_key="inputs", |
|
input_datatype=datatype_input, |
|
label_key="label", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
features_base_single_label_alt = [{"input_ids": (0, 1, 2, 3, 4), "label": float(i)} for i in range(4)] |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=lambda x: default_data_collator(x, return_tensors="tf"), |
|
base_data=features_base_single_label_alt, |
|
input_key="input_ids", |
|
input_datatype=list, |
|
label_key="label", |
|
label_datatype=float, |
|
) |
|
|
|
def test_with_padding_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_original = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}] |
|
features_batch = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}] |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10, return_tensors="tf") |
|
self._validate_original_data_against_collated_data( |
|
collator=data_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
self._validate_original_data_against_collated_data( |
|
collator=data_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
def test_for_token_classification_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_base = [ |
|
{"input_ids": (0, 1, 2), "labels": (0, 1, 2)}, |
|
{"input_ids": (0, 1, 2, 3, 4, 5), "labels": (0, 1, 2, 3, 4, 5)}, |
|
] |
|
token_classification_collators = [ |
|
DataCollatorForTokenClassification(tokenizer, return_tensors="tf"), |
|
DataCollatorForTokenClassification(tokenizer, padding="max_length", max_length=10, return_tensors="tf"), |
|
DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8, return_tensors="tf"), |
|
DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1, return_tensors="tf"), |
|
] |
|
|
|
for datatype_input, datatype_label in [(list, list)]: |
|
for collator in token_classification_collators: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=collator, |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=token_classification_collators[-1], |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
def test_seq2seq_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_base = [ |
|
{"input_ids": list(range(3)), "labels": list(range(3))}, |
|
{"input_ids": list(range(6)), "labels": list(range(6))}, |
|
] |
|
seq2seq_collators = [ |
|
DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.LONGEST, return_tensors="tf"), |
|
DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.MAX_LENGTH, max_length=7, return_tensors="tf"), |
|
DataCollatorForSeq2Seq( |
|
tokenizer, padding=PaddingStrategy.LONGEST, pad_to_multiple_of=8, return_tensors="tf" |
|
), |
|
DataCollatorForSeq2Seq( |
|
tokenizer, padding=PaddingStrategy.LONGEST, label_pad_token_id=-1, return_tensors="tf" |
|
), |
|
] |
|
|
|
for datatype_input, datatype_label in [(list, list)]: |
|
for collator in seq2seq_collators: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=collator, |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=seq2seq_collators[-1], |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
features_base_no_pad = [ |
|
{"input_ids": list(range(3)), "labels": list(range(3))}, |
|
{"input_ids": list(range(3)), "labels": list(range(3))}, |
|
] |
|
seq2seq_no_padding_collator = DataCollatorForSeq2Seq( |
|
tokenizer, padding=PaddingStrategy.DO_NOT_PAD, return_tensors="tf" |
|
) |
|
for datatype_input, datatype_label in [(list, list)]: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=seq2seq_no_padding_collator, |
|
base_data=features_base_no_pad, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
def test_language_modelling_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_base_no_pad = [ |
|
{"input_ids": tuple(range(10)), "labels": (1,)}, |
|
{"input_ids": tuple(range(10)), "labels": (1,)}, |
|
] |
|
features_base_pad = [ |
|
{"input_ids": tuple(range(5)), "labels": (1,)}, |
|
{"input_ids": tuple(range(5)), "labels": (1,)}, |
|
] |
|
lm_collators = [ |
|
DataCollatorForLanguageModeling(tokenizer, mlm=False, return_tensors="tf"), |
|
DataCollatorForLanguageModeling(tokenizer, mlm=False, pad_to_multiple_of=8, return_tensors="tf"), |
|
DataCollatorForLanguageModeling(tokenizer, return_tensors="tf"), |
|
DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="tf"), |
|
] |
|
|
|
for datatype_input, datatype_label in [(list, list)]: |
|
for collator in lm_collators: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=collator, |
|
base_data=features_base_no_pad, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=collator, |
|
base_data=features_base_pad, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
def test_whole_world_masking_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_base = [ |
|
{"input_ids": list(range(10)), "labels": (1,)}, |
|
{"input_ids": list(range(10)), "labels": (1,)}, |
|
] |
|
whole_word_masking_collator = DataCollatorForWholeWordMask(tokenizer, return_tensors="tf") |
|
|
|
for datatype_input, datatype_label in [(list, list), (np.array, np.array)]: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=whole_word_masking_collator, |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
def test_permutation_language_modelling_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
plm_collator = DataCollatorForPermutationLanguageModeling(tokenizer, return_tensors="tf") |
|
|
|
no_pad_features_original = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
no_pad_features_batch = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
self._validate_original_data_against_collated_data( |
|
collator=plm_collator, original_data=no_pad_features_original, batch_data=no_pad_features_batch |
|
) |
|
|
|
pad_features_original = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
pad_features_batch = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
self._validate_original_data_against_collated_data( |
|
collator=plm_collator, original_data=pad_features_original, batch_data=pad_features_batch |
|
) |
|
|
|
def test_next_sentence_prediction_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_original = [ |
|
{"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i} |
|
for i in range(2) |
|
] |
|
features_batch = [ |
|
{"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i} |
|
for i in range(2) |
|
] |
|
|
|
nsp_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="tf") |
|
self._validate_original_data_against_collated_data( |
|
collator=nsp_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
nsp_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
self._validate_original_data_against_collated_data( |
|
collator=nsp_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
def test_sentence_order_prediction_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_original = [ |
|
{ |
|
"input_ids": tf.convert_to_tensor([0, 1, 2, 3, 4]), |
|
"token_type_ids": tf.convert_to_tensor([0, 1, 2, 3, 4]), |
|
"sentence_order_label": i, |
|
} |
|
for i in range(2) |
|
] |
|
features_batch = [ |
|
{ |
|
"input_ids": tf.convert_to_tensor([0, 1, 2, 3, 4]), |
|
"token_type_ids": tf.convert_to_tensor([0, 1, 2, 3, 4]), |
|
"sentence_order_label": i, |
|
} |
|
for i in range(2) |
|
] |
|
|
|
sop_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="tf") |
|
self._validate_original_data_against_collated_data( |
|
collator=sop_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
sop_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
self._validate_original_data_against_collated_data( |
|
collator=sop_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
|
|
class NumpyDataCollatorIntegrationTest(unittest.TestCase): |
|
def setUp(self): |
|
self.tmpdirname = tempfile.mkdtemp() |
|
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"] |
|
self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt") |
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmpdirname) |
|
|
|
def test_default_with_dict(self): |
|
features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="np") |
|
self.assertEqual(batch["labels"].tolist(), list(range(8))) |
|
self.assertEqual(batch["labels"].dtype, np.int64) |
|
self.assertEqual(batch["inputs"].shape, (8, 6)) |
|
|
|
|
|
features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="np") |
|
self.assertEqual(batch["labels"].tolist(), [[0, 1, 2]] * 8) |
|
self.assertEqual(batch["labels"].dtype, np.int64) |
|
self.assertEqual(batch["inputs"].shape, (8, 6)) |
|
|
|
|
|
features = [{"label": i, "inputs": np.random.randint(0, 10, [10])} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="np") |
|
self.assertEqual(batch["labels"].tolist(), list(range(8))) |
|
self.assertEqual(batch["labels"].dtype, np.int64) |
|
self.assertEqual(batch["inputs"].shape, (8, 10)) |
|
|
|
|
|
features = [{"label": np.array(i), "inputs": np.random.randint(0, 10, [10])} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="np") |
|
self.assertEqual(batch["labels"].dtype, np.int64) |
|
self.assertEqual(batch["labels"].tolist(), (list(range(8)))) |
|
self.assertEqual(batch["labels"].dtype, np.int64) |
|
self.assertEqual(batch["inputs"].shape, (8, 10)) |
|
|
|
def test_default_classification_and_regression(self): |
|
data_collator = default_data_collator |
|
|
|
features = [{"input_ids": [0, 1, 2, 3, 4], "label": i} for i in range(4)] |
|
batch = data_collator(features, return_tensors="np") |
|
self.assertEqual(batch["labels"].dtype, np.int64) |
|
|
|
features = [{"input_ids": [0, 1, 2, 3, 4], "label": float(i)} for i in range(4)] |
|
batch = data_collator(features, return_tensors="np") |
|
self.assertEqual(batch["labels"].dtype, np.float32) |
|
|
|
def test_default_with_no_labels(self): |
|
features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="np") |
|
self.assertTrue("labels" not in batch) |
|
self.assertEqual(batch["inputs"].shape, (8, 6)) |
|
|
|
|
|
features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="np") |
|
self.assertTrue("labels" not in batch) |
|
self.assertEqual(batch["inputs"].shape, (8, 6)) |
|
|
|
def test_data_collator_with_padding(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}] |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 6)) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 8)) |
|
|
|
def test_data_collator_with_flattening(self): |
|
features = [ |
|
{"input_ids": [10, 11, 12]}, |
|
{"input_ids": [20, 21, 22, 23, 24, 25]}, |
|
{"input_ids": [30, 31, 32, 33, 34, 35, 36]}, |
|
] |
|
|
|
data_collator = DataCollatorWithFlattening(return_tensors="np") |
|
batch = data_collator(features) |
|
|
|
for unexpected_key in [ |
|
"attention_mask", |
|
"cu_seq_lens_k", |
|
"cu_seq_lens_q", |
|
"max_length_k", |
|
"max_length_q", |
|
"seq_idx", |
|
]: |
|
self.assertNotIn(unexpected_key, batch) |
|
self.assertIn("position_ids", batch) |
|
|
|
self.assertEqual(batch["input_ids"].shape, (1, 16)) |
|
self.assertEqual( |
|
batch["input_ids"][0].tolist(), [10, 11, 12, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 35, 36] |
|
) |
|
self.assertEqual(batch["position_ids"].shape, (1, 16)) |
|
self.assertEqual(batch["position_ids"][0].tolist(), [0, 1, 2, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6]) |
|
|
|
def test_data_collator_with_flattening_flash_attn_kwargs(self): |
|
features = [ |
|
{"input_ids": [10, 11, 12]}, |
|
{"input_ids": [20, 21, 22, 23, 24, 25]}, |
|
{"input_ids": [30, 31, 32, 33, 34, 35, 36]}, |
|
] |
|
|
|
data_collator = DataCollatorWithFlattening(return_tensors="np", return_flash_attn_kwargs=True) |
|
batch = data_collator(features) |
|
|
|
for unexpected_key in [ |
|
"attention_mask", |
|
"seq_idx", |
|
]: |
|
self.assertNotIn(unexpected_key, batch) |
|
for expected_key in [ |
|
"position_ids", |
|
"cu_seq_lens_k", |
|
"cu_seq_lens_q", |
|
"max_length_k", |
|
"max_length_q", |
|
]: |
|
self.assertIn(expected_key, batch) |
|
|
|
self.assertEqual(batch["input_ids"].shape, (1, 16)) |
|
self.assertEqual( |
|
batch["input_ids"][0].tolist(), [10, 11, 12, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 35, 36] |
|
) |
|
self.assertEqual(batch["position_ids"].shape, (1, 16)) |
|
self.assertEqual(batch["position_ids"][0].tolist(), [0, 1, 2, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6]) |
|
|
|
self.assertEqual(batch["cu_seq_lens_k"].shape, (4,)) |
|
self.assertEqual(batch["cu_seq_lens_k"].tolist(), [0, 3, 9, 16]) |
|
self.assertEqual(batch["cu_seq_lens_q"].shape, (4,)) |
|
self.assertEqual(batch["cu_seq_lens_q"].tolist(), [0, 3, 9, 16]) |
|
|
|
self.assertEqual(batch["max_length_k"], 7) |
|
self.assertEqual(batch["max_length_q"], 7) |
|
|
|
def test_data_collator_with_flattening_seq_idx(self): |
|
features = [ |
|
{"input_ids": [10, 11, 12]}, |
|
{"input_ids": [20, 21, 22, 23, 24, 25]}, |
|
{"input_ids": [30, 31, 32, 33, 34, 35, 36]}, |
|
] |
|
|
|
data_collator = DataCollatorWithFlattening(return_tensors="np", return_seq_idx=True) |
|
batch = data_collator(features) |
|
|
|
for unexpected_key in [ |
|
"attention_mask", |
|
"cu_seq_lens_k", |
|
"cu_seq_lens_q", |
|
"max_length_k", |
|
"max_length_q", |
|
]: |
|
self.assertNotIn(unexpected_key, batch) |
|
for expected_key in [ |
|
"position_ids", |
|
"seq_idx", |
|
]: |
|
self.assertIn(expected_key, batch) |
|
|
|
self.assertEqual(batch["input_ids"].shape, (1, 16)) |
|
self.assertEqual( |
|
batch["input_ids"][0].tolist(), [10, 11, 12, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 35, 36] |
|
) |
|
self.assertEqual(batch["position_ids"].shape, (1, 16)) |
|
self.assertEqual(batch["position_ids"][0].tolist(), [0, 1, 2, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6]) |
|
self.assertEqual(batch["seq_idx"].shape, batch["input_ids"].shape) |
|
self.assertEqual(batch["seq_idx"][0].tolist(), [0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]) |
|
|
|
def test_data_collator_for_token_classification(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": [0, 1, 2], "labels": [0, 1, 2]}, |
|
{"input_ids": [0, 1, 2, 3, 4, 5], "labels": [0, 1, 2, 3, 4, 5]}, |
|
] |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 6)) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape, (2, 6)) |
|
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-100] * 3) |
|
|
|
data_collator = DataCollatorForTokenClassification( |
|
tokenizer, padding="max_length", max_length=10, return_tensors="np" |
|
) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 8)) |
|
self.assertEqual(batch["labels"].shape, (2, 8)) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 6)) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape, (2, 6)) |
|
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3) |
|
|
|
def test_data_collator_for_seq2seq(self): |
|
def create_features(): |
|
return [ |
|
{"input_ids": list(range(3)), "labels": list(range(3))}, |
|
{"input_ids": list(range(6)), "labels": list(range(6))}, |
|
] |
|
|
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = create_features() |
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.LONGEST, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 6)) |
|
self.assertEqual(batch["input_ids"][0].tolist(), list(range(3)) + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["input_ids"][1].tolist(), list(range(6))) |
|
self.assertEqual(batch["labels"].shape, (2, 6)) |
|
self.assertEqual(batch["labels"][0].tolist(), list(range(3)) + [-100] * 3) |
|
self.assertEqual(batch["labels"][1].tolist(), list(range(6))) |
|
|
|
data_collator = DataCollatorForSeq2Seq( |
|
tokenizer, padding=PaddingStrategy.MAX_LENGTH, max_length=7, return_tensors="np" |
|
) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 7)) |
|
self.assertEqual(batch["input_ids"][0].tolist(), list(range(3)) + [tokenizer.pad_token_id] * 4) |
|
self.assertEqual(batch["input_ids"][1].tolist(), list(range(6)) + [tokenizer.pad_token_id] * 1) |
|
self.assertEqual(batch["labels"].shape, (2, 7)) |
|
self.assertEqual(batch["labels"][0].tolist(), list(range(3)) + [-100] * 4) |
|
self.assertEqual(batch["labels"][1].tolist(), list(range(6)) + [-100] * 1) |
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.DO_NOT_PAD, return_tensors="np") |
|
|
|
|
|
|
|
batch = data_collator([features[0], features[0]]) |
|
self.assertEqual(batch["input_ids"][0].tolist(), features[0]["input_ids"]) |
|
self.assertEqual(batch["input_ids"][1].tolist(), features[0]["input_ids"]) |
|
self.assertEqual(batch["labels"][0].tolist(), features[0]["labels"]) |
|
self.assertEqual(batch["labels"][1].tolist(), features[0]["labels"]) |
|
|
|
data_collator = DataCollatorForSeq2Seq( |
|
tokenizer, padding=PaddingStrategy.LONGEST, pad_to_multiple_of=8, return_tensors="np" |
|
) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 8)) |
|
self.assertEqual(batch["labels"].shape, (2, 8)) |
|
|
|
|
|
features = create_features() |
|
|
|
data_collator = DataCollatorForSeq2Seq( |
|
tokenizer, padding=PaddingStrategy.LONGEST, label_pad_token_id=-1, return_tensors="np" |
|
) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 6)) |
|
self.assertEqual(batch["input_ids"][0].tolist(), list(range(3)) + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["input_ids"][1].tolist(), list(range(6))) |
|
self.assertEqual(batch["labels"].shape, (2, 6)) |
|
self.assertEqual(batch["labels"][0].tolist(), list(range(3)) + [-1] * 3) |
|
self.assertEqual(batch["labels"][1].tolist(), list(range(6))) |
|
|
|
for feature in features: |
|
feature.pop("labels") |
|
|
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 6)) |
|
self.assertEqual(batch["input_ids"][0].tolist(), list(range(3)) + [tokenizer.pad_token_id] * 3) |
|
|
|
def _test_no_pad_and_pad(self, no_pad_features, pad_features): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False, return_tensors="np") |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
batch = data_collator(pad_features, return_tensors="np") |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
data_collator = DataCollatorForLanguageModeling( |
|
tokenizer, mlm=False, pad_to_multiple_of=8, return_tensors="np" |
|
) |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 16)) |
|
self.assertEqual(batch["labels"].shape, (2, 16)) |
|
|
|
batch = data_collator(pad_features, return_tensors="np") |
|
self.assertEqual(batch["input_ids"].shape, (2, 16)) |
|
self.assertEqual(batch["labels"].shape, (2, 16)) |
|
|
|
tokenizer.pad_token = None |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False, return_tensors="np") |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(pad_features) |
|
|
|
set_seed(42) |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="np") |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(np.any(masked_tokens)) |
|
|
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(np.any(masked_tokens)) |
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 16)) |
|
self.assertEqual(batch["labels"].shape, (2, 16)) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(np.any(masked_tokens)) |
|
|
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 16)) |
|
self.assertEqual(batch["labels"].shape, (2, 16)) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(np.any(masked_tokens)) |
|
|
|
|
|
def test_data_collator_for_language_modeling(self): |
|
no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
self._test_no_pad_and_pad(no_pad_features, pad_features) |
|
|
|
no_pad_features = [list(range(10)), list(range(10))] |
|
pad_features = [list(range(5)), list(range(10))] |
|
self._test_no_pad_and_pad(no_pad_features, pad_features) |
|
|
|
def test_data_collator_for_language_modeling_with_seed(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [{"input_ids": list(range(1000))}, {"input_ids": list(range(1000))}] |
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, seed=42, return_tensors="np") |
|
batch_1 = data_collator(features) |
|
self.assertEqual(batch_1["input_ids"].shape, (2, 1000)) |
|
self.assertEqual(batch_1["labels"].shape, (2, 1000)) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, seed=42, return_tensors="np") |
|
batch_2 = data_collator(features) |
|
self.assertEqual(batch_2["input_ids"].shape, (2, 1000)) |
|
self.assertEqual(batch_2["labels"].shape, (2, 1000)) |
|
|
|
self.assertTrue(np.all(batch_1["input_ids"] == batch_2["input_ids"])) |
|
self.assertTrue(np.all(batch_1["labels"] == batch_2["labels"])) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, seed=43, return_tensors="np") |
|
batch_3 = data_collator(features) |
|
self.assertEqual(batch_3["input_ids"].shape, (2, 1000)) |
|
self.assertEqual(batch_3["labels"].shape, (2, 1000)) |
|
|
|
self.assertFalse(np.all(batch_1["input_ids"] == batch_3["input_ids"])) |
|
self.assertFalse(np.all(batch_1["labels"] == batch_3["labels"])) |
|
|
|
def test_data_collator_for_whole_word_mask(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForWholeWordMask(tokenizer, return_tensors="np") |
|
|
|
features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
|
|
features = [{"input_ids": np.arange(10)}, {"input_ids": np.arange(10)}] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
def test_data_collator_for_whole_word_mask_with_seed(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [{"input_ids": list(range(1000))}, {"input_ids": list(range(1000))}] |
|
|
|
|
|
data_collator = DataCollatorForWholeWordMask(tokenizer, seed=42, return_tensors="np") |
|
batch_1 = data_collator(features) |
|
self.assertEqual(batch_1["input_ids"].shape, (2, 1000)) |
|
self.assertEqual(batch_1["labels"].shape, (2, 1000)) |
|
|
|
data_collator = DataCollatorForWholeWordMask(tokenizer, seed=42, return_tensors="np") |
|
batch_2 = data_collator(features) |
|
self.assertEqual(batch_2["input_ids"].shape, (2, 1000)) |
|
self.assertEqual(batch_2["labels"].shape, (2, 1000)) |
|
|
|
self.assertTrue(np.all(batch_1["input_ids"] == batch_2["input_ids"])) |
|
self.assertTrue(np.all(batch_1["labels"] == batch_2["labels"])) |
|
|
|
data_collator = DataCollatorForWholeWordMask(tokenizer, seed=43, return_tensors="np") |
|
batch_3 = data_collator(features) |
|
self.assertEqual(batch_3["input_ids"].shape, (2, 1000)) |
|
self.assertEqual(batch_3["labels"].shape, (2, 1000)) |
|
|
|
self.assertFalse(np.all(batch_1["input_ids"] == batch_3["input_ids"])) |
|
self.assertFalse(np.all(batch_1["labels"] == batch_3["labels"])) |
|
|
|
def test_plm(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
|
|
data_collator = DataCollatorForPermutationLanguageModeling(tokenizer, return_tensors="np") |
|
|
|
batch = data_collator(pad_features) |
|
self.assertIsInstance(batch, dict) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["perm_mask"].shape, (2, 10, 10)) |
|
self.assertEqual(batch["target_mapping"].shape, (2, 10, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
batch = data_collator(no_pad_features) |
|
self.assertIsInstance(batch, dict) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["perm_mask"].shape, (2, 10, 10)) |
|
self.assertEqual(batch["target_mapping"].shape, (2, 10, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
example = [np.random.randint(0, 5, [5])] |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(example) |
|
|
|
def test_nsp(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i} |
|
for i in range(2) |
|
] |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="np") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, (2, 5)) |
|
self.assertEqual(batch["token_type_ids"].shape, (2, 5)) |
|
self.assertEqual(batch["labels"].shape, (2, 5)) |
|
self.assertEqual(batch["next_sentence_label"].shape, (2,)) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, (2, 8)) |
|
self.assertEqual(batch["token_type_ids"].shape, (2, 8)) |
|
self.assertEqual(batch["labels"].shape, (2, 8)) |
|
self.assertEqual(batch["next_sentence_label"].shape, (2,)) |
|
|
|
def test_sop(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{ |
|
"input_ids": np.array([0, 1, 2, 3, 4]), |
|
"token_type_ids": np.array([0, 1, 2, 3, 4]), |
|
"sentence_order_label": i, |
|
} |
|
for i in range(2) |
|
] |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="np") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, (2, 5)) |
|
self.assertEqual(batch["token_type_ids"].shape, (2, 5)) |
|
self.assertEqual(batch["labels"].shape, (2, 5)) |
|
self.assertEqual(batch["sentence_order_label"].shape, (2,)) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, (2, 8)) |
|
self.assertEqual(batch["token_type_ids"].shape, (2, 8)) |
|
self.assertEqual(batch["labels"].shape, (2, 8)) |
|
self.assertEqual(batch["sentence_order_label"].shape, (2,)) |
|
|
|
|
|
class NumpyDataCollatorImmutabilityTest(unittest.TestCase): |
|
def setUp(self): |
|
self.tmpdirname = tempfile.mkdtemp() |
|
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"] |
|
self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt") |
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmpdirname) |
|
|
|
def _turn_to_none(self, item): |
|
"""used to convert `item` to `None` type""" |
|
return None |
|
|
|
def _validate_original_data_against_collated_data(self, collator, original_data, batch_data): |
|
|
|
collator(batch_data) |
|
|
|
|
|
|
|
for original, batch in zip(original_data, batch_data): |
|
for original_val, batch_val in zip(original.values(), batch.values()): |
|
if isinstance(original_val, np.ndarray): |
|
self.assertEqual(original_val.tolist(), batch_val.tolist()) |
|
else: |
|
self.assertEqual(original_val, batch_val) |
|
|
|
def _validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
self, collator, base_data, input_key, input_datatype, label_key, label_datatype, ignore_label=False |
|
): |
|
|
|
features_original = [ |
|
{label_key: label_datatype(sample[label_key]), input_key: input_datatype(sample[input_key])} |
|
for sample in base_data |
|
] |
|
features_batch = [ |
|
{label_key: label_datatype(sample[label_key]), input_key: input_datatype(sample[input_key])} |
|
for sample in base_data |
|
] |
|
|
|
|
|
if ignore_label: |
|
for original, batch in zip(features_original, features_batch): |
|
original.pop(label_key) |
|
batch.pop(label_key) |
|
|
|
self._validate_original_data_against_collated_data( |
|
collator=collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
def test_default_collator_immutability(self): |
|
features_base_single_label = [{"label": i, "inputs": (0, 1, 2, 3, 4, 5)} for i in range(4)] |
|
features_base_multiple_labels = [{"label": (0, 1, 2), "inputs": (0, 1, 2, 3, 4, 5)} for i in range(4)] |
|
|
|
for datatype_input, datatype_label in [ |
|
(list, int), |
|
(list, float), |
|
(np.array, int), |
|
(np.array, np.array), |
|
(list, self._turn_to_none), |
|
]: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=lambda x: default_data_collator(x, return_tensors="np"), |
|
base_data=features_base_single_label, |
|
input_key="inputs", |
|
input_datatype=datatype_input, |
|
label_key="label", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
for datatype_input, datatype_label in [(list, list), (list, self._turn_to_none)]: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=lambda x: default_data_collator(x, return_tensors="np"), |
|
base_data=features_base_multiple_labels, |
|
input_key="inputs", |
|
input_datatype=datatype_input, |
|
label_key="label", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
features_base_single_label_alt = [{"input_ids": (0, 1, 2, 3, 4), "label": float(i)} for i in range(4)] |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=lambda x: default_data_collator(x, return_tensors="np"), |
|
base_data=features_base_single_label_alt, |
|
input_key="input_ids", |
|
input_datatype=list, |
|
label_key="label", |
|
label_datatype=float, |
|
) |
|
|
|
def test_with_padding_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_original = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}] |
|
features_batch = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}] |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10, return_tensors="np") |
|
self._validate_original_data_against_collated_data( |
|
collator=data_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
self._validate_original_data_against_collated_data( |
|
collator=data_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
def test_for_token_classification_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_base = [ |
|
{"input_ids": (0, 1, 2), "labels": (0, 1, 2)}, |
|
{"input_ids": (0, 1, 2, 3, 4, 5), "labels": (0, 1, 2, 3, 4, 5)}, |
|
] |
|
token_classification_collators = [ |
|
DataCollatorForTokenClassification(tokenizer, return_tensors="np"), |
|
DataCollatorForTokenClassification(tokenizer, padding="max_length", max_length=10, return_tensors="np"), |
|
DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8, return_tensors="np"), |
|
DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1, return_tensors="np"), |
|
] |
|
|
|
for datatype_input, datatype_label in [(list, list)]: |
|
for collator in token_classification_collators: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=collator, |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=token_classification_collators[-1], |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
def test_seq2seq_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_base = [ |
|
{"input_ids": list(range(3)), "labels": list(range(3))}, |
|
{"input_ids": list(range(6)), "labels": list(range(6))}, |
|
] |
|
seq2seq_collators = [ |
|
DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.LONGEST, return_tensors="np"), |
|
DataCollatorForSeq2Seq(tokenizer, padding=PaddingStrategy.MAX_LENGTH, max_length=7, return_tensors="np"), |
|
DataCollatorForSeq2Seq( |
|
tokenizer, padding=PaddingStrategy.LONGEST, pad_to_multiple_of=8, return_tensors="np" |
|
), |
|
DataCollatorForSeq2Seq( |
|
tokenizer, padding=PaddingStrategy.LONGEST, label_pad_token_id=-1, return_tensors="np" |
|
), |
|
] |
|
|
|
for datatype_input, datatype_label in [(list, list)]: |
|
for collator in seq2seq_collators: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=collator, |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=seq2seq_collators[-1], |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
features_base_no_pad = [ |
|
{"input_ids": list(range(3)), "labels": list(range(3))}, |
|
{"input_ids": list(range(3)), "labels": list(range(3))}, |
|
] |
|
seq2seq_no_padding_collator = DataCollatorForSeq2Seq( |
|
tokenizer, padding=PaddingStrategy.DO_NOT_PAD, return_tensors="np" |
|
) |
|
for datatype_input, datatype_label in [(list, list)]: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=seq2seq_no_padding_collator, |
|
base_data=features_base_no_pad, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
) |
|
|
|
def test_language_modelling_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_base_no_pad = [ |
|
{"input_ids": tuple(range(10)), "labels": (1,)}, |
|
{"input_ids": tuple(range(10)), "labels": (1,)}, |
|
] |
|
features_base_pad = [ |
|
{"input_ids": tuple(range(5)), "labels": (1,)}, |
|
{"input_ids": tuple(range(5)), "labels": (1,)}, |
|
] |
|
lm_collators = [ |
|
DataCollatorForLanguageModeling(tokenizer, mlm=False, return_tensors="np"), |
|
DataCollatorForLanguageModeling(tokenizer, mlm=False, pad_to_multiple_of=8, return_tensors="np"), |
|
DataCollatorForLanguageModeling(tokenizer, return_tensors="np"), |
|
DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="np"), |
|
] |
|
|
|
for datatype_input, datatype_label in [(list, list)]: |
|
for collator in lm_collators: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=collator, |
|
base_data=features_base_no_pad, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=collator, |
|
base_data=features_base_pad, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
def test_whole_world_masking_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_base = [ |
|
{"input_ids": list(range(10)), "labels": (1,)}, |
|
{"input_ids": list(range(10)), "labels": (1,)}, |
|
] |
|
whole_word_masking_collator = DataCollatorForWholeWordMask(tokenizer, return_tensors="np") |
|
|
|
for datatype_input, datatype_label in [(list, list), (np.array, np.array)]: |
|
self._validate_original_data_against_collated_data_on_specified_keys_and_datatypes( |
|
collator=whole_word_masking_collator, |
|
base_data=features_base, |
|
input_key="input_ids", |
|
input_datatype=datatype_input, |
|
label_key="labels", |
|
label_datatype=datatype_label, |
|
ignore_label=True, |
|
) |
|
|
|
def test_permutation_language_modelling_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
plm_collator = DataCollatorForPermutationLanguageModeling(tokenizer, return_tensors="np") |
|
|
|
no_pad_features_original = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
no_pad_features_batch = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
self._validate_original_data_against_collated_data( |
|
collator=plm_collator, original_data=no_pad_features_original, batch_data=no_pad_features_batch |
|
) |
|
|
|
pad_features_original = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
pad_features_batch = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
self._validate_original_data_against_collated_data( |
|
collator=plm_collator, original_data=pad_features_original, batch_data=pad_features_batch |
|
) |
|
|
|
def test_next_sentence_prediction_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_original = [ |
|
{"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i} |
|
for i in range(2) |
|
] |
|
features_batch = [ |
|
{"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i} |
|
for i in range(2) |
|
] |
|
|
|
nsp_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="np") |
|
self._validate_original_data_against_collated_data( |
|
collator=nsp_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
nsp_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
self._validate_original_data_against_collated_data( |
|
collator=nsp_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
def test_sentence_order_prediction_collator_immutability(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
|
|
features_original = [ |
|
{ |
|
"input_ids": np.array([0, 1, 2, 3, 4]), |
|
"token_type_ids": np.array([0, 1, 2, 3, 4]), |
|
"sentence_order_label": i, |
|
} |
|
for i in range(2) |
|
] |
|
features_batch = [ |
|
{ |
|
"input_ids": np.array([0, 1, 2, 3, 4]), |
|
"token_type_ids": np.array([0, 1, 2, 3, 4]), |
|
"sentence_order_label": i, |
|
} |
|
for i in range(2) |
|
] |
|
|
|
sop_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="np") |
|
self._validate_original_data_against_collated_data( |
|
collator=sop_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|
|
sop_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
self._validate_original_data_against_collated_data( |
|
collator=sop_collator, original_data=features_original, batch_data=features_batch |
|
) |
|
|