|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import json |
|
import os |
|
import tempfile |
|
import warnings |
|
|
|
import numpy as np |
|
from packaging import version |
|
|
|
from transformers import AutoVideoProcessor |
|
from transformers.testing_utils import ( |
|
check_json_file_has_correct_format, |
|
require_torch, |
|
require_torch_accelerator, |
|
require_vision, |
|
slow, |
|
torch_device, |
|
) |
|
from transformers.utils import is_torch_available, is_vision_available |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
|
|
def prepare_video(num_frames, num_channels, width=10, height=10, return_tensors="pil"): |
|
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors.""" |
|
|
|
video = [] |
|
for i in range(num_frames): |
|
video.append(np.random.randint(255, size=(width, height, num_channels), dtype=np.uint8)) |
|
|
|
if return_tensors == "pil": |
|
|
|
video = [Image.fromarray(frame) for frame in video] |
|
elif return_tensors == "torch": |
|
|
|
video = torch.tensor(video).permute(0, 3, 1, 2) |
|
elif return_tensors == "np": |
|
|
|
video = np.array(video) |
|
|
|
return video |
|
|
|
|
|
def prepare_video_inputs( |
|
batch_size, |
|
num_frames, |
|
num_channels, |
|
min_resolution, |
|
max_resolution, |
|
equal_resolution=False, |
|
return_tensors="pil", |
|
): |
|
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if |
|
one specifies return_tensors="np", or a list of list of PyTorch tensors if one specifies return_tensors="torch". |
|
|
|
One can specify whether the videos are of the same resolution or not. |
|
""" |
|
|
|
video_inputs = [] |
|
for i in range(batch_size): |
|
if equal_resolution: |
|
width = height = max_resolution |
|
else: |
|
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2) |
|
video = prepare_video( |
|
num_frames=num_frames, |
|
num_channels=num_channels, |
|
width=width, |
|
height=height, |
|
return_tensors=return_tensors, |
|
) |
|
video_inputs.append(video) |
|
|
|
return video_inputs |
|
|
|
|
|
class VideoProcessingTestMixin: |
|
test_cast_dtype = None |
|
fast_video_processing_class = None |
|
video_processor_list = None |
|
input_name = "pixel_values_videos" |
|
|
|
def setUp(self): |
|
video_processor_list = [] |
|
|
|
if self.fast_video_processing_class: |
|
video_processor_list.append(self.fast_video_processing_class) |
|
|
|
self.video_processor_list = video_processor_list |
|
|
|
def test_video_processor_to_json_string(self): |
|
for video_processing_class in self.video_processor_list: |
|
video_processor = video_processing_class(**self.video_processor_dict) |
|
obj = json.loads(video_processor.to_json_string()) |
|
for key, value in self.video_processor_dict.items(): |
|
self.assertEqual(obj[key], value) |
|
|
|
def test_video_processor_to_json_file(self): |
|
for video_processing_class in self.video_processor_list: |
|
video_processor_first = video_processing_class(**self.video_processor_dict) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
json_file_path = os.path.join(tmpdirname, "video_processor.json") |
|
video_processor_first.to_json_file(json_file_path) |
|
video_processor_second = video_processing_class.from_json_file(json_file_path) |
|
|
|
self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict()) |
|
|
|
def test_video_processor_from_dict_with_kwargs(self): |
|
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict) |
|
self.assertEqual(video_processor.size, {"shortest_edge": 20}) |
|
self.assertEqual(video_processor.crop_size, {"height": 18, "width": 18}) |
|
|
|
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict, size=42, crop_size=84) |
|
self.assertEqual(video_processor.size, {"shortest_edge": 42}) |
|
self.assertEqual(video_processor.crop_size, {"height": 84, "width": 84}) |
|
|
|
def test_video_processor_from_and_save_pretrained(self): |
|
for video_processing_class in self.video_processor_list: |
|
video_processor_first = video_processing_class(**self.video_processor_dict) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
saved_file = video_processor_first.save_pretrained(tmpdirname)[0] |
|
check_json_file_has_correct_format(saved_file) |
|
video_processor_second = video_processing_class.from_pretrained(tmpdirname) |
|
|
|
self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict()) |
|
|
|
def test_video_processor_save_load_with_autovideoprocessor(self): |
|
for video_processing_class in self.video_processor_list: |
|
video_processor_first = video_processing_class(**self.video_processor_dict) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
saved_file = video_processor_first.save_pretrained(tmpdirname)[0] |
|
check_json_file_has_correct_format(saved_file) |
|
|
|
use_fast = video_processing_class.__name__.endswith("Fast") |
|
video_processor_second = AutoVideoProcessor.from_pretrained(tmpdirname, use_fast=use_fast) |
|
|
|
self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict()) |
|
|
|
def test_init_without_params(self): |
|
for video_processing_class in self.video_processor_list: |
|
video_processor = video_processing_class() |
|
self.assertIsNotNone(video_processor) |
|
|
|
@slow |
|
@require_torch_accelerator |
|
@require_vision |
|
def test_can_compile_fast_video_processor(self): |
|
if self.fast_video_processing_class is None: |
|
self.skipTest("Skipping compilation test as fast video processor is not defined") |
|
if version.parse(torch.__version__) < version.parse("2.3"): |
|
self.skipTest(reason="This test requires torch >= 2.3 to run.") |
|
|
|
torch.compiler.reset() |
|
video_inputs = self.video_processor_tester.prepare_video_inputs(equal_resolution=False, return_tensors="torch") |
|
video_processor = self.fast_video_processing_class(**self.video_processor_dict) |
|
output_eager = video_processor(video_inputs, device=torch_device, return_tensors="pt") |
|
|
|
video_processor = torch.compile(video_processor, mode="reduce-overhead") |
|
output_compiled = video_processor(video_inputs, device=torch_device, return_tensors="pt") |
|
|
|
torch.testing.assert_close( |
|
output_eager[self.input_name], output_compiled[self.input_name], rtol=1e-4, atol=1e-4 |
|
) |
|
|
|
@require_torch |
|
@require_vision |
|
def test_cast_dtype_device(self): |
|
for video_processing_class in self.video_processor_list: |
|
if self.test_cast_dtype is not None: |
|
|
|
video_processor = video_processing_class(**self.video_processor_dict) |
|
|
|
|
|
video_inputs = self.video_processor_tester.prepare_video_inputs( |
|
equal_resolution=False, return_tensors="torch" |
|
) |
|
|
|
encoding = video_processor(video_inputs, return_tensors="pt") |
|
|
|
self.assertEqual(encoding[self.input_name].device, torch.device("cpu")) |
|
self.assertEqual(encoding[self.input_name].dtype, torch.float32) |
|
|
|
encoding = video_processor(video_inputs, return_tensors="pt").to(torch.float16) |
|
self.assertEqual(encoding[self.input_name].device, torch.device("cpu")) |
|
self.assertEqual(encoding[self.input_name].dtype, torch.float16) |
|
|
|
encoding = video_processor(video_inputs, return_tensors="pt").to("cpu", torch.bfloat16) |
|
self.assertEqual(encoding[self.input_name].device, torch.device("cpu")) |
|
self.assertEqual(encoding[self.input_name].dtype, torch.bfloat16) |
|
|
|
with self.assertRaises(TypeError): |
|
_ = video_processor(video_inputs, return_tensors="pt").to(torch.bfloat16, "cpu") |
|
|
|
|
|
encoding = video_processor(video_inputs, return_tensors="pt") |
|
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])}) |
|
encoding = encoding.to(torch.float16) |
|
|
|
self.assertEqual(encoding[self.input_name].device, torch.device("cpu")) |
|
self.assertEqual(encoding[self.input_name].dtype, torch.float16) |
|
self.assertEqual(encoding.input_ids.dtype, torch.long) |
|
|
|
def test_call_pil(self): |
|
for video_processing_class in self.video_processor_list: |
|
|
|
video_processing = video_processing_class(**self.video_processor_dict) |
|
video_inputs = self.video_processor_tester.prepare_video_inputs(equal_resolution=False) |
|
|
|
|
|
for video in video_inputs: |
|
self.assertIsInstance(video[0], Image.Image) |
|
|
|
|
|
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name] |
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]]) |
|
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) |
|
|
|
|
|
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name] |
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs) |
|
self.assertEqual( |
|
tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape) |
|
) |
|
|
|
def test_call_numpy(self): |
|
for video_processing_class in self.video_processor_list: |
|
|
|
video_processing = video_processing_class(**self.video_processor_dict) |
|
|
|
video_inputs = self.video_processor_tester.prepare_video_inputs( |
|
equal_resolution=False, return_tensors="np" |
|
) |
|
for video in video_inputs: |
|
self.assertIsInstance(video, np.ndarray) |
|
|
|
|
|
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name] |
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]]) |
|
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) |
|
|
|
|
|
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name] |
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs) |
|
self.assertEqual( |
|
tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape) |
|
) |
|
|
|
def test_call_pytorch(self): |
|
for video_processing_class in self.video_processor_list: |
|
|
|
video_processing = video_processing_class(**self.video_processor_dict) |
|
|
|
video_inputs = self.video_processor_tester.prepare_video_inputs( |
|
equal_resolution=False, return_tensors="torch" |
|
) |
|
|
|
for video in video_inputs: |
|
self.assertIsInstance(video, torch.Tensor) |
|
|
|
|
|
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name] |
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]]) |
|
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) |
|
|
|
|
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs) |
|
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name] |
|
self.assertEqual( |
|
tuple(encoded_videos.shape), |
|
(self.video_processor_tester.batch_size, *expected_output_video_shape), |
|
) |
|
|
|
def test_nested_input(self): |
|
"""Tests that the processor can work with nested list where each video is a list of arrays""" |
|
for video_processing_class in self.video_processor_list: |
|
video_processing = video_processing_class(**self.video_processor_dict) |
|
video_inputs = self.video_processor_tester.prepare_video_inputs( |
|
equal_resolution=False, return_tensors="np" |
|
) |
|
|
|
|
|
video_inputs = [list(video) for video in video_inputs] |
|
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name] |
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]]) |
|
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) |
|
|
|
|
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs) |
|
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name] |
|
self.assertEqual( |
|
tuple(encoded_videos.shape), |
|
(self.video_processor_tester.batch_size, *expected_output_video_shape), |
|
) |
|
|
|
def test_call_numpy_4_channels(self): |
|
for video_processing_class in self.video_processor_list: |
|
|
|
|
|
video_processor = video_processing_class(**self.video_processor_dict) |
|
|
|
|
|
self.video_processor_tester.num_channels = 4 |
|
video_inputs = self.video_processor_tester.prepare_video_inputs( |
|
equal_resolution=False, return_tensors="pil" |
|
) |
|
|
|
|
|
encoded_videos = video_processor( |
|
video_inputs[0], |
|
return_tensors="pt", |
|
input_data_format="channels_last", |
|
image_mean=0, |
|
image_std=1, |
|
)[self.input_name] |
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]]) |
|
if video_processor.do_convert_rgb: |
|
expected_output_video_shape = list(expected_output_video_shape) |
|
expected_output_video_shape[1] = 3 |
|
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) |
|
|
|
|
|
encoded_videos = video_processor( |
|
video_inputs, |
|
return_tensors="pt", |
|
input_data_format="channels_last", |
|
image_mean=0, |
|
image_std=1, |
|
)[self.input_name] |
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs) |
|
if video_processor.do_convert_rgb: |
|
expected_output_video_shape = list(expected_output_video_shape) |
|
expected_output_video_shape[1] = 3 |
|
self.assertEqual( |
|
tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape) |
|
) |
|
|
|
def test_video_processor_preprocess_arguments(self): |
|
is_tested = False |
|
|
|
for video_processing_class in self.video_processor_list: |
|
video_processor = video_processing_class(**self.video_processor_dict) |
|
|
|
|
|
if hasattr(video_processor, "_valid_processor_keys") and hasattr(video_processor, "preprocess"): |
|
preprocess_parameter_names = inspect.getfullargspec(video_processor.preprocess).args |
|
preprocess_parameter_names.remove("self") |
|
preprocess_parameter_names.sort() |
|
valid_processor_keys = video_processor._valid_processor_keys |
|
valid_processor_keys.sort() |
|
self.assertEqual(preprocess_parameter_names, valid_processor_keys) |
|
is_tested = True |
|
|
|
|
|
if hasattr(video_processor.preprocess, "_filter_out_non_signature_kwargs"): |
|
if hasattr(self.video_processor_tester, "prepare_video_inputs"): |
|
inputs = self.video_processor_tester.prepare_video_inputs() |
|
elif hasattr(self.video_processor_tester, "prepare_video_inputs"): |
|
inputs = self.video_processor_tester.prepare_video_inputs() |
|
else: |
|
self.skipTest(reason="No valid input preparation method found") |
|
|
|
with warnings.catch_warnings(record=True) as raised_warnings: |
|
warnings.simplefilter("always") |
|
video_processor(inputs, extra_argument=True) |
|
|
|
messages = " ".join([str(w.message) for w in raised_warnings]) |
|
self.assertGreaterEqual(len(raised_warnings), 1) |
|
self.assertIn("extra_argument", messages) |
|
is_tested = True |
|
|
|
if not is_tested: |
|
self.skipTest(reason="No validation found for `preprocess` method") |
|
|