|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import tempfile |
|
import unittest |
|
|
|
from parameterized import parameterized |
|
|
|
from transformers import AddedToken, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer |
|
from transformers.testing_utils import ( |
|
require_gguf, |
|
require_read_token, |
|
require_torch_accelerator, |
|
slow, |
|
torch_device, |
|
) |
|
from transformers.utils import is_gguf_available, is_torch_available |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_gguf_available(): |
|
from gguf import GGMLQuantizationType as QuantType |
|
|
|
|
|
@require_gguf |
|
@require_torch_accelerator |
|
@slow |
|
class GgufQuantizationTests(unittest.TestCase): |
|
""" |
|
Test cases for weights dequantization with GGUF models. |
|
Note: The quantization names should keep aligned with `GGMLQuantizationType` in gguf-py: |
|
https://github.com/ggerganov/llama.cpp/blob/4b0c638b9a68f577cb2066b638c9f622d91ee661/gguf-py/gguf/constants.py#L1545-L1576 |
|
So quantization like Q4_K_M or Q4_K_S shouldn't be added to this tests. |
|
""" |
|
|
|
example_text = "Hello" |
|
|
|
def run_gguf_model(self, gguf_model_id: str, gguf_filename: str, expected_text: str): |
|
tokenizer = AutoTokenizer.from_pretrained(gguf_model_id, gguf_file=gguf_filename) |
|
model = AutoModelForCausalLM.from_pretrained(gguf_model_id, gguf_file=gguf_filename).to(torch_device) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), expected_text) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
("Q4_0", "Hello, World!\n\nStep 3: Add"), |
|
("Q5_0", "Hello, World!\n\n5. Use a library"), |
|
("Q8_0", "Hello, World!\n\n5. Use a library"), |
|
], |
|
) |
|
def test_standard_quants(self, quant_type: str, expected_text: str): |
|
gguf_model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF" |
|
filename_format = "tinyllama-1.1b-chat-v1.0.{quant_type}.gguf" |
|
gguf_filename = filename_format.format(quant_type=quant_type) |
|
self.run_gguf_model(gguf_model_id, gguf_filename, expected_text) |
|
|
|
|
|
@parameterized.expand( |
|
[ |
|
("Q2_K", "Hello, I'm a 22 year old female"), |
|
("Q3_K", "Hello\n\nI am trying to create a simple program that"), |
|
("Q4_K", "Hello\n\nI am trying to create a simple program that"), |
|
("Q5_K", "Helloveda is a 1999 Indian"), |
|
("Q6_K", "Hello\n\nI am trying to create a simple program that"), |
|
], |
|
) |
|
def test_k_quants(self, quant_type: str, expected_text: str): |
|
gguf_model_id = "legraphista/Qwen2.5-0.5B-Instruct-IMat-GGUF" |
|
filename_format = "Qwen2.5-0.5B-Instruct.{quant_type}.gguf" |
|
gguf_filename = filename_format.format(quant_type=quant_type) |
|
self.run_gguf_model(gguf_model_id, gguf_filename, expected_text) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
("IQ1_S", "Hello, I'm a friend of mine, I"), |
|
("IQ1_M", "Hello, I am interested in purching a copy of"), |
|
("IQ2_XXS", "Hello, I'm a software engineer. I'"), |
|
("IQ2_XS", "Hello World!\n\n```\n<|user|"), |
|
("IQ2_S", "Hello World!\n\n```\n<|user|"), |
|
("IQ3_XXS", "Hello, I am interested in your product. Can you"), |
|
("IQ4_XS", "Hello, world!\n\n5. Using a loop"), |
|
("IQ3_S", "Hello, World!\n\n5. Python:\n"), |
|
("IQ4_NL", "Hello, world!\n\n5. Using a loop"), |
|
], |
|
) |
|
def test_imatrix_quants(self, quant_type: str, expected_text: str): |
|
gguf_model_id = "duyntnet/TinyLlama-1.1B-Chat-v1.0-imatrix-GGUF" |
|
filename_format = "TinyLlama-1.1B-Chat-v1.0-{quant_type}.gguf" |
|
gguf_filename = filename_format.format(quant_type=quant_type) |
|
self.run_gguf_model(gguf_model_id, gguf_filename, expected_text) |
|
|
|
|
|
@require_gguf |
|
@require_torch_accelerator |
|
@slow |
|
class GgufIntegrationTests(unittest.TestCase): |
|
""" |
|
Test cases for basic interoperability with GGUF models: |
|
- Tokenization |
|
- Model dtype casting and serialization |
|
""" |
|
|
|
example_text = "Hello" |
|
original_model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" |
|
gguf_model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF" |
|
gguf_filename = "tinyllama-1.1b-chat-v1.0.{quant_type}.gguf" |
|
|
|
def test_tokenization_xnli(self): |
|
import tqdm |
|
from datasets import load_dataset |
|
|
|
q8_0_gguf_model_id = self.gguf_filename.format(quant_type=QuantType.Q8_0.name) |
|
gguf_tokenizer = AutoTokenizer.from_pretrained(self.gguf_model_id, gguf_file=q8_0_gguf_model_id) |
|
original_tokenizer = AutoTokenizer.from_pretrained(self.original_model_id) |
|
|
|
dataset = load_dataset("google/code_x_glue_ct_code_to_text", "go") |
|
for item in tqdm.tqdm(dataset["validation"]): |
|
string = item["code"] |
|
encoded1 = gguf_tokenizer.encode(string) |
|
encoded2 = original_tokenizer.encode(string) |
|
|
|
self.assertEqual(encoded1, encoded2) |
|
|
|
decoded1 = gguf_tokenizer.decode(encoded1, skip_special_tokens=True) |
|
decoded2 = original_tokenizer.decode(encoded2, skip_special_tokens=True) |
|
|
|
self.assertEqual(decoded1, decoded2) |
|
|
|
dataset = load_dataset("facebook/xnli", "all_languages") |
|
|
|
for i, item in enumerate(tqdm.tqdm(dataset["train"].select(range(100)))): |
|
for string in item["premise"].values(): |
|
encoded1 = gguf_tokenizer.encode(string) |
|
encoded2 = original_tokenizer.encode(string) |
|
|
|
self.assertEqual(encoded1, encoded2) |
|
|
|
decoded1 = gguf_tokenizer.decode(encoded1, skip_special_tokens=True) |
|
decoded2 = original_tokenizer.decode(encoded2, skip_special_tokens=True) |
|
|
|
self.assertEqual(decoded1, decoded2) |
|
|
|
|
|
gguf_tokenizer = AutoTokenizer.from_pretrained(self.gguf_model_id, gguf_file=q8_0_gguf_model_id) |
|
original_tokenizer = AutoTokenizer.from_pretrained(self.original_model_id) |
|
|
|
gguf_tokenizer.add_special_tokens( |
|
{"additional_special_tokens": [AddedToken("<token>", rstrip=False, lstrip=False)]} |
|
) |
|
original_tokenizer.add_special_tokens( |
|
{"additional_special_tokens": [AddedToken("<token>", rstrip=False, lstrip=False)]} |
|
) |
|
|
|
text = "Hello <token>. <token> Hello" |
|
|
|
encoded1 = gguf_tokenizer.encode(text) |
|
encoded2 = original_tokenizer.encode(text) |
|
|
|
self.assertEqual(encoded1, encoded2) |
|
|
|
decoded1 = gguf_tokenizer.decode(encoded1, skip_special_tokens=True) |
|
decoded2 = original_tokenizer.decode(encoded2, skip_special_tokens=True) |
|
|
|
self.assertEqual(decoded1, decoded2) |
|
|
|
def test_q2_k_serialization(self): |
|
q2_k_gguf_model_id = self.gguf_filename.format(quant_type=QuantType.Q2_K.name) |
|
EXPECTED_TEXT = "Hello, World!\n\n[10:0" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.gguf_model_id, gguf_file=q2_k_gguf_model_id) |
|
model = AutoModelForCausalLM.from_pretrained(self.gguf_model_id, gguf_file=q2_k_gguf_model_id).to(torch_device) |
|
|
|
orig_text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) |
|
orig_out = model.generate(**orig_text, max_new_tokens=10) |
|
self.assertEqual(tokenizer.decode(orig_out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
tokenizer.save_pretrained(tmpdirname) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(tmpdirname).to(torch_device) |
|
tokenizer = AutoTokenizer.from_pretrained(tmpdirname) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_q6_k_fp16(self): |
|
q6_k_gguf_model_id = self.gguf_filename.format(quant_type=QuantType.Q6_K.name) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.gguf_model_id, gguf_file=q6_k_gguf_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.gguf_model_id, gguf_file=q6_k_gguf_model_id, torch_dtype=torch.float16 |
|
).to(torch_device) |
|
|
|
self.assertTrue(model.lm_head.weight.dtype == torch.float16) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello, World!\n\nStep 3: Add" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_gguf_errors_disk_offload(self): |
|
from collections import OrderedDict |
|
|
|
q2_k_gguf_model_id = self.gguf_filename.format(quant_type=QuantType.Q2_K.name) |
|
with self.assertRaises(RuntimeError): |
|
AutoModelForCausalLM.from_pretrained( |
|
self.gguf_model_id, |
|
device_map=OrderedDict( |
|
[ |
|
("model.embed_tokens", "cpu"), |
|
("lm_head", "cpu"), |
|
("model.layers.0", "cpu"), |
|
("model.layers.1", "cpu"), |
|
("model.layers.2", "cpu"), |
|
("model.layers.3", "cpu"), |
|
("model.layers.4", "cpu"), |
|
("model.layers.5", "cpu"), |
|
("model.layers.6", "cpu"), |
|
("model.layers.7", "cpu"), |
|
("model.layers.8", "cpu"), |
|
("model.layers.9", "cpu"), |
|
("model.layers.10", "disk"), |
|
("model.layers.11", "disk"), |
|
("model.layers.12", "disk"), |
|
("model.layers.13", "disk"), |
|
("model.layers.14", "disk"), |
|
("model.layers.15", "disk"), |
|
("model.layers.16", "disk"), |
|
("model.layers.17", "disk"), |
|
("model.layers.18", "disk"), |
|
("model.layers.19", "disk"), |
|
("model.layers.20", "disk"), |
|
("model.layers.21", "disk"), |
|
("model.layers.22", "disk"), |
|
("model.norm", "disk"), |
|
("model.rotary_emb", "disk"), |
|
] |
|
), |
|
gguf_file=q2_k_gguf_model_id, |
|
offload_folder="offload", |
|
offload_state_dict=True, |
|
) |
|
|
|
|
|
@require_gguf |
|
@require_torch_accelerator |
|
@slow |
|
class GgufModelTests(unittest.TestCase): |
|
mistral_model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF" |
|
qwen2_model_id = "Qwen/Qwen1.5-0.5B-Chat-GGUF" |
|
qwen2moe_model_id = "gdax/Qwen1.5-MoE-A2.7B_gguf" |
|
qwen2moe_original_model_id = "Qwen/Qwen1.5-MoE-A2.7B" |
|
llama3_model_id = "NousResearch/Meta-Llama-3-8B-GGUF" |
|
tinyllama_model_id = "PenutChen/TinyLlama-1.1B-Chat-v1.0-GGUF" |
|
phi3_model_id = "microsoft/Phi-3-mini-4k-instruct-gguf" |
|
bloom_model_id = "afrideva/bloom-560m-GGUF" |
|
original_bloom_model_id = "bigscience/bloom-560m" |
|
falcon7b_model_id_q2 = "xaviviro/falcon-7b-quantized-gguf" |
|
falcon7b_model_id_fp16 = "medmekk/falcon-7b-gguf" |
|
falcon40b_model_id = "maddes8cht/tiiuae-falcon-40b-gguf" |
|
original_flacon7b_model_id = "tiiuae/falcon-7b" |
|
t5_model_id = "repetitio/flan-t5-small" |
|
original_t5_model_id = "google/flan-t5-small" |
|
stablelm_model_id = "afrideva/stablelm-3b-4e1t-GGUF" |
|
stablelm2_model_id = "afrideva/stablelm-2-1_6b-GGUF" |
|
original_stablelm2_model_id = "stabilityai/stablelm-2-1_6b" |
|
gpt2_model_id = "mradermacher/gpt2-GGUF" |
|
gpt2_original_model_id = "openai-community/gpt2" |
|
gpt2_xl_model_id = "RichardErkhov/openai-community_-_gpt2-xl-gguf" |
|
starcoder2_model_id = "QuantFactory/starcoder2-3b-GGUF" |
|
starcoder2_fp16_model_id = "brittlewis12/starcoder2-3b-GGUF" |
|
starcoder2_original_model_id = "bigcode/starcoder2-3b" |
|
mamba_original_model_id = "state-spaces/mamba-2.8b-hf" |
|
mamba_model_id = "jpodivin/mamba-2.8b-hf-GGUF" |
|
nemotron_original_model_id = "nvidia/Nemotron-Mini-4B-Instruct" |
|
nemotron_model_id = "bartowski/Nemotron-Mini-4B-Instruct-GGUF" |
|
original_gemma2_model_id = "google/gemma-2-2b-it" |
|
gemma2_model_id = "bartowski/gemma-2-2b-it-GGUF" |
|
original_gemma3_text_model_id = "google/gemma-3-1b-it" |
|
original_gemma3_vision_model_id = "google/gemma-3-4b-it" |
|
gemma3_qat_model_id = "google/gemma-3-1b-it-qat-q4_0-gguf" |
|
gemma3_text_model_id = "unsloth/gemma-3-1b-it-GGUF" |
|
gemma3_vision_model_id = "unsloth/gemma-3-4b-it-GGUF" |
|
|
|
q4_0_phi3_model_id = "Phi-3-mini-4k-instruct-q4.gguf" |
|
q4_0_mistral_model_id = "mistral-7b-instruct-v0.2.Q4_0.gguf" |
|
q4_0_qwen2_model_id = "qwen1_5-0_5b-chat-q4_0.gguf" |
|
q8_qwen2moe_model_id = "Qwen1.5-MoE-A2.7B_Q8_0.gguf" |
|
q4_llama3_model_id = "Meta-Llama-3-8B-Q4_K_M.gguf" |
|
fp16_bloom_model_id = "bloom-560m.fp16.gguf" |
|
q4_k_m_stablelm_model_id = "stablelm-3b-4e1t.q4_k_m.gguf" |
|
fp16_stablelm2_model_id = "stablelm-2-1_6b.fp16.gguf" |
|
q8_bloom_model_id = "bloom-560m.q8_0.gguf" |
|
f16_tinyllama_model_id = "TinyLlama-1.1B-Chat-v1.0.FP16.gguf" |
|
q2_k_falcon7b_model_id = "falcon-7b-q2_k.gguf" |
|
fp16_falcon7b_model_id = "falcon-7b-fp16.gguf" |
|
q2_k_falcon40b_model_id = "tiiuae-falcon-40b-Q2_K.gguf" |
|
fp16_t5_model_id = "flan-t5-small-f16.gguf" |
|
q8_0_t5_model_id = "flan-t5-small-q8_0.gguf" |
|
fp16_qwen2moe_model_id = "Qwen1.5-MoE-A2.7B.gguf" |
|
fp16_gpt2_model_id = "gpt2.f16.gguf" |
|
q8_gpt2_model_id = "gpt2.Q8_0.gguf" |
|
q6_k_gpt2_xl_model_id = "gpt2-xl.Q6_K.gguf" |
|
q6_k_starcoder2_model_id = "starcoder2-3b.Q6_K.gguf" |
|
fp16_starcoder2_gguf_model_id = "starcoder2-3b.fp16.gguf" |
|
q6_k_mamba_model_id = "ggml-model-Q6_K.gguf" |
|
fp16_mamba_model_id = "ggml-model-f16.gguf" |
|
q6_k_nemotron_model_id = "Nemotron-Mini-4B-Instruct-Q6_K.gguf" |
|
fp16_nemotron_model_id = "Nemotron-Mini-4B-Instruct-f16.gguf" |
|
q3_k_gemma2_model_id = "gemma-2-2b-it-Q3_K_L.gguf" |
|
q8_0_gemma2_model_id = "gemma-2-2b-it-Q8_0.gguf" |
|
fp32_gemma2_model_id = "gemma-2-2b-it-f32.gguf" |
|
q4_0_gemma3_qat_model_id = "gemma-3-1b-it-q4_0.gguf" |
|
bf16_gemma3_text_model_id = "gemma-3-1b-it-BF16.gguf" |
|
bf16_gemma3_vision_model_id = "gemma-3-4b-it-BF16.gguf" |
|
|
|
example_text = "Hello" |
|
|
|
def test_mistral_q4_0(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.mistral_model_id, gguf_file=self.q4_0_mistral_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.mistral_model_id, |
|
gguf_file=self.q4_0_mistral_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello,\n\nI'm trying to create a" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_qwen2_q4_0(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.qwen2_model_id, gguf_file=self.q4_0_qwen2_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.qwen2_model_id, |
|
gguf_file=self.q4_0_qwen2_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello.jsoup\n\nI am a beginner" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_qwen2moe_q8(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.qwen2moe_model_id, gguf_file=self.q8_qwen2moe_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.qwen2moe_model_id, |
|
gguf_file=self.q8_qwen2moe_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt") |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello, I am a 20 year old male" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_qwen2moe_weights_conversion_fp16(self): |
|
quantized_model = AutoModelForCausalLM.from_pretrained( |
|
self.qwen2moe_model_id, |
|
gguf_file=self.fp16_qwen2moe_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
original_model = AutoModelForCausalLM.from_pretrained( |
|
self.qwen2moe_original_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
quantized_state_dict = quantized_model.state_dict() |
|
original_state_dict = original_model.state_dict() |
|
|
|
for layer_name, original_params in original_state_dict.items(): |
|
if layer_name in quantized_state_dict: |
|
self.assertTrue(original_params.shape == quantized_state_dict[layer_name].shape) |
|
torch.testing.assert_close(original_params, quantized_state_dict[layer_name]) |
|
|
|
def test_phi3_q4_0(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.phi3_model_id, gguf_file=self.q4_0_phi3_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.phi3_model_id, gguf_file=self.q4_0_phi3_model_id, device_map="auto", torch_dtype=torch.float16 |
|
) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello, I've been reading about the impact of" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_llama3_q4_0_tokenizer(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.llama3_model_id, gguf_file=self.q4_llama3_model_id) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
tokenizer.save_pretrained(tmpdirname) |
|
tokenizer = AutoTokenizer.from_pretrained(tmpdirname) |
|
special_sentence = "ΰΈͺΰΈ§ΰΈ±ΰΈͺΰΈΰΈ΅" |
|
predicted_text = tokenizer.decode(tokenizer.encode(special_sentence, return_tensors="pt")[0]) |
|
self.assertEqual(predicted_text, "<|begin_of_text|>" + special_sentence) |
|
|
|
def test_llama3_q4_0(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.llama3_model_id, gguf_file=self.q4_llama3_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.llama3_model_id, |
|
gguf_file=self.q4_llama3_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello, I am interested in [The Park]\nThe" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_bloom_fp16(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.bloom_model_id, gguf_file=self.fp16_bloom_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.bloom_model_id, |
|
gguf_file=self.fp16_bloom_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello, I just want to say that I am very" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_bloom_q8_0(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.bloom_model_id, gguf_file=self.q8_bloom_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.bloom_model_id, |
|
gguf_file=self.q8_bloom_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello, I just want to say that I am just" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_bloom_weights_conversion_fp16(self): |
|
quantized_model = AutoModelForCausalLM.from_pretrained( |
|
self.bloom_model_id, |
|
gguf_file=self.fp16_bloom_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
original_model = AutoModelForCausalLM.from_pretrained( |
|
self.original_bloom_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
quantized_state_dict = quantized_model.state_dict() |
|
original_state_dict = original_model.state_dict() |
|
|
|
for (quantized_name, quantized_param), (original_name, original_param) in zip( |
|
quantized_state_dict.items(), original_state_dict.items() |
|
): |
|
if ( |
|
"self_attention.query_key_value" in quantized_name |
|
and "self_attention.query_key_value" in original_name |
|
): |
|
self.assertTrue(quantized_param.shape == original_param.shape) |
|
torch.testing.assert_close(quantized_param, original_param) |
|
|
|
def test_t5_f16(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.t5_model_id, gguf_file=self.fp16_t5_model_id) |
|
model = AutoModelForSeq2SeqLM.from_pretrained( |
|
self.t5_model_id, gguf_file=self.fp16_t5_model_id, device_map="auto", torch_dtype=torch.float16 |
|
) |
|
|
|
T5_EXAMPLE_TEXT = "translate English to German: How old are you?" |
|
|
|
text = tokenizer(T5_EXAMPLE_TEXT, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Wie ich er?" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_t5_q8_0(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.t5_model_id, gguf_file=self.q8_0_t5_model_id) |
|
model = AutoModelForSeq2SeqLM.from_pretrained( |
|
self.t5_model_id, gguf_file=self.q8_0_t5_model_id, device_map="auto", torch_dtype=torch.float16 |
|
) |
|
|
|
T5_EXAMPLE_TEXT = "translate English to German: How old are you?" |
|
|
|
text = tokenizer(T5_EXAMPLE_TEXT, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Wie ich er?" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_t5_weights_conversion_fp16(self): |
|
quantized_model = AutoModelForSeq2SeqLM.from_pretrained( |
|
self.t5_model_id, |
|
gguf_file=self.fp16_t5_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
original_model = AutoModelForSeq2SeqLM.from_pretrained( |
|
self.original_t5_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
quantized_state_dict = quantized_model.state_dict() |
|
original_state_dict = original_model.state_dict() |
|
|
|
for (quantized_name, quantized_param), (original_name, original_param) in zip( |
|
quantized_state_dict.items(), original_state_dict.items() |
|
): |
|
self.assertTrue(quantized_param.shape == original_param.shape) |
|
torch.testing.assert_close(quantized_param, original_param, rtol=5e-04, atol=5e-04) |
|
|
|
def test_gpt2_q8(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.gpt2_model_id, gguf_file=self.q8_gpt2_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.gpt2_model_id, |
|
gguf_file=self.q8_gpt2_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt") |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello, I'm sorry. I'm sorry. I" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_gpt2_weights_conversion_fp16(self): |
|
quantized_model = AutoModelForCausalLM.from_pretrained( |
|
self.gpt2_model_id, |
|
gguf_file=self.fp16_gpt2_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
original_model = AutoModelForCausalLM.from_pretrained( |
|
self.gpt2_original_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
quantized_state_dict = quantized_model.state_dict() |
|
original_state_dict = original_model.state_dict() |
|
|
|
for layer_name, original_params in original_state_dict.items(): |
|
if layer_name in quantized_state_dict: |
|
self.assertTrue(original_params.shape == quantized_state_dict[layer_name].shape) |
|
torch.testing.assert_close(original_params, quantized_state_dict[layer_name]) |
|
else: |
|
raise ValueError(f"Layer {layer_name} is not presented in GGUF model") |
|
|
|
def test_gpt2_xl_Q6_K(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.gpt2_xl_model_id, gguf_file=self.q6_k_gpt2_xl_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.gpt2_xl_model_id, |
|
gguf_file=self.q6_k_gpt2_xl_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt") |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello, I'm a newbie to the world of" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
@unittest.skip(reason="Heavy memory") |
|
def test_falcon40b_q2_k(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.falcon40b_model_id, gguf_file=self.q2_k_falcon40b_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.falcon40b_model_id, |
|
gguf_file=self.q2_k_falcon40b_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello All,\nI am new to this forum." |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_falcon7b_q2_k(self): |
|
tokenizer = AutoTokenizer.from_pretrained(self.falcon7b_model_id_q2, gguf_file=self.q2_k_falcon7b_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.falcon7b_model_id_q2, |
|
gguf_file=self.q2_k_falcon7b_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"].to(torch_device) |
|
out = model.generate(text, max_new_tokens=16) |
|
|
|
EXPECTED_TEXT = "Hello All,\nI am new to this forum.\nI am using the " |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
@unittest.skip("The test causes a torch.OutOfMemoryError on the CI but it passes with enough memory") |
|
def test_falcon7b_weights_conversion_fp16(self): |
|
quantized_model = AutoModelForCausalLM.from_pretrained( |
|
self.falcon7b_model_id_fp16, |
|
gguf_file=self.fp16_falcon7b_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
original_model = AutoModelForCausalLM.from_pretrained( |
|
self.original_flacon7b_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
quantized_state_dict = quantized_model.state_dict() |
|
original_state_dict = original_model.state_dict() |
|
|
|
for layer_name, original_params in original_state_dict.items(): |
|
if layer_name in quantized_state_dict: |
|
self.assertTrue(original_params.shape == quantized_state_dict[layer_name].shape) |
|
torch.testing.assert_close(original_params, quantized_state_dict[layer_name]) |
|
else: |
|
raise ValueError(f"Layer {layer_name} is not presented in GGUF model") |
|
|
|
def test_stablelm_q4_k_m(self): |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.stablelm_model_id, |
|
gguf_file=self.q4_k_m_stablelm_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.stablelm_model_id, gguf_file=self.q4_k_m_stablelm_model_id) |
|
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello-\nI am trying to create a new user" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_stablelm_fp16(self): |
|
original_model = AutoModelForCausalLM.from_pretrained( |
|
self.original_stablelm2_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_model = AutoModelForCausalLM.from_pretrained( |
|
self.stablelm2_model_id, |
|
gguf_file=self.fp16_stablelm2_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.stablelm2_model_id, gguf_file=self.fp16_stablelm2_model_id) |
|
text = tokenizer(self.example_text, return_tensors="pt") |
|
original_out = original_model.generate(**text, max_new_tokens=10) |
|
converted_out = converted_model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello, I am a 20 year old male" |
|
self.assertEqual(tokenizer.decode(converted_out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
self.assertEqual( |
|
tokenizer.decode(converted_out[0], skip_special_tokens=True), |
|
tokenizer.decode(original_out[0], skip_special_tokens=True), |
|
) |
|
|
|
def test_stablelm_weights_conversion_fp16(self): |
|
original_model = AutoModelForCausalLM.from_pretrained( |
|
self.original_stablelm2_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_model = AutoModelForCausalLM.from_pretrained( |
|
self.stablelm2_model_id, |
|
gguf_file=self.fp16_stablelm2_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_state_dict = converted_model.state_dict() |
|
original_state_dict = original_model.state_dict() |
|
|
|
for layer_name, original_params in original_state_dict.items(): |
|
if layer_name in converted_state_dict: |
|
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) |
|
torch.testing.assert_close(original_params, converted_state_dict[layer_name]) |
|
else: |
|
raise ValueError(f"Layer {layer_name} is not presented in GGUF model") |
|
|
|
def test_starcoder2_weights_conversion_fp16(self): |
|
original_model = AutoModelForCausalLM.from_pretrained( |
|
self.starcoder2_original_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_model = AutoModelForCausalLM.from_pretrained( |
|
self.starcoder2_fp16_model_id, |
|
gguf_file=self.fp16_starcoder2_gguf_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_state_dict = converted_model.state_dict() |
|
original_state_dict = original_model.state_dict() |
|
|
|
for layer_name, original_params in original_state_dict.items(): |
|
if layer_name in converted_state_dict: |
|
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) |
|
torch.testing.assert_close(original_params, converted_state_dict[layer_name]) |
|
else: |
|
raise ValueError(f"Layer {layer_name} is not presented in GGUF model") |
|
|
|
def test_starcoder2_q6_k(self): |
|
example_function_text = "def print_hello_world():" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.starcoder2_model_id, |
|
gguf_file=self.q6_k_starcoder2_model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.starcoder2_model_id, gguf_file=self.q6_k_starcoder2_model_id) |
|
text = tokenizer(example_function_text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = 'def print_hello_world():\n print("Hello World")\n\ndef print' |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_mamba_weights_conversion_fp16(self): |
|
original_model = AutoModelForCausalLM.from_pretrained( |
|
self.mamba_original_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_model = AutoModelForCausalLM.from_pretrained( |
|
self.mamba_model_id, |
|
gguf_file=self.fp16_mamba_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_state_dict = converted_model.state_dict() |
|
original_state_dict = original_model.state_dict() |
|
|
|
for layer_name, original_params in original_state_dict.items(): |
|
if layer_name in converted_state_dict: |
|
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) |
|
if "mixer.A_log" in layer_name: |
|
|
|
|
|
torch.testing.assert_close(original_params, converted_state_dict[layer_name], rtol=1e-3, atol=1e-3) |
|
else: |
|
torch.testing.assert_close(original_params, converted_state_dict[layer_name]) |
|
else: |
|
raise ValueError(f"Layer {layer_name} is not presented in GGUF model") |
|
|
|
def test_mamba_q6_k(self): |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.mamba_model_id, |
|
gguf_file=self.q6_k_mamba_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.mamba_model_id, gguf_file=self.q6_k_mamba_model_id) |
|
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"] |
|
out = model.generate(text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello,I answerthe question.\n\nA" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_nemotron_weights_conversion_fp16(self): |
|
original_model = AutoModelForCausalLM.from_pretrained( |
|
self.nemotron_original_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_model = AutoModelForCausalLM.from_pretrained( |
|
self.nemotron_model_id, |
|
gguf_file=self.fp16_nemotron_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_state_dict = converted_model.state_dict() |
|
original_state_dict = original_model.state_dict() |
|
|
|
for layer_name, original_params in original_state_dict.items(): |
|
if layer_name in converted_state_dict: |
|
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) |
|
torch.testing.assert_close(original_params, converted_state_dict[layer_name]) |
|
else: |
|
raise ValueError(f"Layer {layer_name} is not presented in GGUF model") |
|
|
|
def test_nemotron_q6_k(self): |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.nemotron_model_id, |
|
gguf_file=self.q6_k_nemotron_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.nemotron_model_id, gguf_file=self.q6_k_nemotron_model_id) |
|
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"] |
|
out = model.generate(text, max_new_tokens=16) |
|
|
|
EXPECTED_TEXT = "Hello.βhotmail.com</s>" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_gemma2_q3_k(self): |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.gemma2_model_id, |
|
gguf_file=self.q3_k_gemma2_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.gemma2_model_id, gguf_file=self.q3_k_gemma2_model_id) |
|
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"] |
|
out = model.generate(text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello! π\n\nI'm trying to create a" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_gemma2_q8_0(self): |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.gemma2_model_id, |
|
gguf_file=self.q8_0_gemma2_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.gemma2_model_id, gguf_file=self.q8_0_gemma2_model_id) |
|
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"] |
|
out = model.generate(text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello! π\n\nI'm a large language model" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
def test_gemma2_fp32(self): |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.gemma2_model_id, |
|
gguf_file=self.fp32_gemma2_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.gemma2_model_id, gguf_file=self.fp32_gemma2_model_id) |
|
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"] |
|
out = model.generate(text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = "Hello! π\n\nI'm a large language model" |
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
@require_read_token |
|
def test_gemma2_weights_conversion_fp32(self): |
|
original_model = AutoModelForCausalLM.from_pretrained( |
|
self.original_gemma2_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_model = AutoModelForCausalLM.from_pretrained( |
|
self.gemma2_model_id, |
|
gguf_file=self.fp32_gemma2_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_state_dict = converted_model.state_dict() |
|
original_state_dict = original_model.state_dict() |
|
|
|
for layer_name, original_params in original_state_dict.items(): |
|
if layer_name in converted_state_dict: |
|
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) |
|
torch.testing.assert_close(original_params, converted_state_dict[layer_name]) |
|
else: |
|
raise ValueError(f"Layer {layer_name} is not presented in GGUF model") |
|
|
|
@require_read_token |
|
@unittest.skipUnless(is_gguf_available("0.16.0"), "test requires gguf version >= 0.16.0") |
|
def test_gemma3_qat_q4_0(self): |
|
model = AutoModelForCausalLM.from_pretrained( |
|
self.gemma3_qat_model_id, |
|
gguf_file=self.q4_0_gemma3_qat_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.gemma3_qat_model_id, gguf_file=self.q4_0_gemma3_qat_model_id) |
|
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"] |
|
out = model.generate(text, max_new_tokens=10) |
|
|
|
EXPECTED_TEXT = 'Hello with the prompt, "What is the best way' |
|
|
|
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) |
|
|
|
@require_read_token |
|
@unittest.skipUnless(is_gguf_available("0.16.0"), "test requires gguf version >= 0.16.0") |
|
def test_gemma3_text_weights_conversion_bf16(self): |
|
original_model = AutoModelForCausalLM.from_pretrained( |
|
self.original_gemma3_text_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_model = AutoModelForCausalLM.from_pretrained( |
|
self.gemma3_text_model_id, |
|
gguf_file=self.bf16_gemma3_text_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_state_dict = converted_model.state_dict() |
|
original_state_dict = original_model.state_dict() |
|
|
|
for layer_name, original_params in original_state_dict.items(): |
|
if layer_name in converted_state_dict: |
|
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) |
|
torch.testing.assert_close(original_params, converted_state_dict[layer_name]) |
|
else: |
|
raise ValueError(f"Layer {layer_name} is not presented in GGUF model") |
|
|
|
|
|
@require_read_token |
|
@unittest.skipUnless(is_gguf_available("0.16.0"), "test requires gguf version >= 0.16.0") |
|
def test_gemma3_vision_weights_conversion_bf16(self): |
|
original_model = AutoModelForCausalLM.from_pretrained( |
|
self.original_gemma3_vision_model_id, |
|
torch_dtype=torch.float16, |
|
).language_model |
|
|
|
converted_model = AutoModelForCausalLM.from_pretrained( |
|
self.gemma3_vision_model_id, |
|
gguf_file=self.bf16_gemma3_vision_model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
converted_state_dict = converted_model.state_dict() |
|
original_state_dict = original_model.state_dict() |
|
|
|
for layer_name, original_params in original_state_dict.items(): |
|
if layer_name in converted_state_dict: |
|
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) |
|
torch.testing.assert_close(original_params, converted_state_dict[layer_name]) |
|
else: |
|
raise ValueError(f"Layer {layer_name} is not presented in GGUF model") |
|
|