|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import importlib |
|
import tempfile |
|
import unittest |
|
from unittest import skip |
|
|
|
from packaging import version |
|
|
|
from transformers import AqlmConfig, AutoConfig, AutoModelForCausalLM, AutoTokenizer, OPTForCausalLM, StaticCache |
|
from transformers.testing_utils import ( |
|
backend_empty_cache, |
|
require_accelerate, |
|
require_aqlm, |
|
require_torch_gpu, |
|
require_torch_multi_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
from transformers.utils import is_accelerate_available, is_aqlm_available, is_torch_available |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_accelerate_available(): |
|
from accelerate import init_empty_weights |
|
|
|
|
|
@require_torch_gpu |
|
class AqlmConfigTest(unittest.TestCase): |
|
def test_to_dict(self): |
|
""" |
|
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object |
|
""" |
|
quantization_config = AqlmConfig() |
|
config_to_dict = quantization_config.to_dict() |
|
|
|
for key in config_to_dict: |
|
self.assertEqual(getattr(quantization_config, key), config_to_dict[key]) |
|
|
|
def test_from_dict(self): |
|
""" |
|
Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict |
|
""" |
|
dict = { |
|
"in_group_size": 32, |
|
"num_codebooks": 8, |
|
"nbits_per_codebook": 8, |
|
"linear_weights_not_to_quantize": ["lm_head.weight"], |
|
} |
|
quantization_config = AqlmConfig.from_dict(dict) |
|
|
|
self.assertEqual(dict["in_group_size"], quantization_config.in_group_size) |
|
self.assertEqual(dict["num_codebooks"], quantization_config.num_codebooks) |
|
self.assertEqual(dict["nbits_per_codebook"], quantization_config.nbits_per_codebook) |
|
self.assertEqual(dict["linear_weights_not_to_quantize"], quantization_config.linear_weights_not_to_quantize) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
@require_aqlm |
|
@require_accelerate |
|
class AqlmTest(unittest.TestCase): |
|
model_name = "BlackSamorez/Llama-2-7b-AQLM-2Bit-1x16-hf" |
|
|
|
input_text = "Hello my name is" |
|
max_new_tokens = 32 |
|
|
|
EXPECTED_OUTPUT = "Hello my name is Katie. I am a 20 year old college student. I am a very outgoing person. I love to have fun and be active. I" |
|
|
|
|
|
@classmethod |
|
def setUpClass(cls): |
|
""" |
|
Setup quantized model |
|
""" |
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) |
|
cls.quantized_model = AutoModelForCausalLM.from_pretrained( |
|
cls.model_name, |
|
device_map=torch_device, |
|
) |
|
|
|
def tearDown(self): |
|
gc.collect() |
|
backend_empty_cache(torch_device) |
|
gc.collect() |
|
|
|
def test_quantized_model_conversion(self): |
|
""" |
|
Simple test that checks if the quantized model has been converted properly |
|
""" |
|
from aqlm import QuantizedLinear |
|
|
|
from transformers.integrations import replace_with_aqlm_linear |
|
|
|
model_id = "facebook/opt-350m" |
|
config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5") |
|
quantization_config = AqlmConfig() |
|
|
|
with init_empty_weights(): |
|
model = OPTForCausalLM(config) |
|
|
|
nb_linears = 0 |
|
for module in model.modules(): |
|
if isinstance(module, torch.nn.Linear): |
|
nb_linears += 1 |
|
|
|
model, _ = replace_with_aqlm_linear(model, quantization_config=quantization_config) |
|
nb_aqlm_linear = 0 |
|
for module in model.modules(): |
|
if isinstance(module, QuantizedLinear): |
|
nb_aqlm_linear += 1 |
|
|
|
self.assertEqual(nb_linears, nb_aqlm_linear) |
|
|
|
|
|
with init_empty_weights(): |
|
model = OPTForCausalLM(config) |
|
|
|
model, _ = replace_with_aqlm_linear( |
|
model, quantization_config=quantization_config, linear_weights_not_to_quantize=["lm_head.weight"] |
|
) |
|
nb_aqlm_linear = 0 |
|
for module in model.modules(): |
|
if isinstance(module, QuantizedLinear): |
|
nb_aqlm_linear += 1 |
|
|
|
self.assertEqual(nb_linears - 1, nb_aqlm_linear) |
|
|
|
@skip( |
|
"inference doesn't work with quantized aqlm models using torch.Any type with recent torch versions. Waiting for the fix from AQLM side" |
|
) |
|
def test_quantized_model(self): |
|
""" |
|
Simple test that checks if the quantized model is working properly |
|
""" |
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) |
|
|
|
output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) |
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) |
|
|
|
def test_raise_if_non_quantized(self): |
|
model_id = "facebook/opt-125m" |
|
quantization_config = AqlmConfig(bits=4) |
|
|
|
with self.assertRaises(ValueError): |
|
_ = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config) |
|
|
|
@skip( |
|
"inference doesn't work with quantized aqlm models using torch.Any type with recent torch versions. Waiting for the fix from AQLM side" |
|
) |
|
def test_save_pretrained(self): |
|
""" |
|
Simple test that checks if the quantized model is working properly after being saved and loaded |
|
""" |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
self.quantized_model.save_pretrained(tmpdirname) |
|
model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=torch_device) |
|
|
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) |
|
|
|
output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens) |
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) |
|
|
|
@skip( |
|
"inference doesn't work with quantized aqlm models using torch.Any type with recent torch versions. Waiting for the fix from AQLM side" |
|
) |
|
@require_torch_multi_gpu |
|
def test_quantized_model_multi_gpu(self): |
|
""" |
|
Simple test that checks if the quantized model is working properly with multiple GPUs |
|
""" |
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device) |
|
|
|
quantized_model = AutoModelForCausalLM.from_pretrained(self.model_name, device_map="auto") |
|
|
|
self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1}) |
|
|
|
output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens) |
|
|
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) |
|
|
|
@unittest.skipUnless( |
|
is_aqlm_available() and version.parse(importlib.metadata.version("aqlm")) >= version.parse("1.0.3"), |
|
"test requires `aqlm>=1.0.3`", |
|
) |
|
def test_quantized_model_compile(self): |
|
""" |
|
Simple test that checks if the quantized model is working properly |
|
""" |
|
|
|
|
|
def decode_one_tokens(model, cur_token, input_pos, cache_position, past_key_values): |
|
logits = model( |
|
cur_token, |
|
position_ids=input_pos, |
|
cache_position=cache_position, |
|
past_key_values=past_key_values, |
|
return_dict=False, |
|
use_cache=True, |
|
)[0] |
|
new_token = torch.argmax(logits[:, [-1]], dim=-1).to(torch.int) |
|
|
|
return new_token |
|
|
|
|
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)["input_ids"] |
|
seq_length = input_ids.shape[1] |
|
|
|
|
|
past_key_values = StaticCache( |
|
config=self.quantized_model.config, |
|
max_batch_size=1, |
|
max_cache_len=seq_length + self.max_new_tokens + 1, |
|
device=torch_device, |
|
dtype=self.quantized_model.config._pre_quantization_dtype, |
|
) |
|
|
|
|
|
cache_position = torch.arange(seq_length, device=torch_device) |
|
generated_ids = torch.zeros(1, seq_length + self.max_new_tokens, dtype=torch.int, device=torch_device) |
|
generated_ids[:, cache_position] = input_ids.to(torch_device).to(torch.int) |
|
|
|
|
|
logits = self.quantized_model( |
|
input_ids, |
|
cache_position=cache_position, |
|
past_key_values=past_key_values, |
|
return_dict=False, |
|
use_cache=True, |
|
)[0] |
|
next_token = torch.argmax(logits[:, [-1]], dim=-1).to(torch.int) |
|
generated_ids[:, [seq_length]] = next_token |
|
|
|
with torch.no_grad(): |
|
|
|
decode_one_tokens = torch.compile(decode_one_tokens, mode="reduce-overhead", fullgraph=True) |
|
|
|
|
|
cache_position = torch.tensor([seq_length + 1], device=torch_device) |
|
for _ in range(1, self.max_new_tokens): |
|
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): |
|
next_token = decode_one_tokens( |
|
self.quantized_model, next_token.clone(), None, cache_position, past_key_values |
|
) |
|
generated_ids.index_copy_(1, cache_position, next_token) |
|
cache_position += 1 |
|
|
|
|
|
self.assertEqual(self.tokenizer.decode(generated_ids[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) |
|
|