|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import datasets |
|
from huggingface_hub import ImageClassificationOutputElement |
|
|
|
from transformers import ( |
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, |
|
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, |
|
PreTrainedTokenizerBase, |
|
is_torch_available, |
|
is_vision_available, |
|
) |
|
from transformers.pipelines import ImageClassificationPipeline, pipeline |
|
from transformers.testing_utils import ( |
|
compare_pipeline_output_to_hub_spec, |
|
is_pipeline_test, |
|
nested_simplify, |
|
require_tf, |
|
require_torch, |
|
require_torch_or_tf, |
|
require_vision, |
|
slow, |
|
) |
|
|
|
from .test_pipelines_common import ANY |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
else: |
|
|
|
class Image: |
|
@staticmethod |
|
def open(*args, **kwargs): |
|
pass |
|
|
|
|
|
@is_pipeline_test |
|
@require_torch_or_tf |
|
@require_vision |
|
class ImageClassificationPipelineTests(unittest.TestCase): |
|
model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING |
|
tf_model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING |
|
_dataset = None |
|
|
|
@classmethod |
|
def _load_dataset(cls): |
|
|
|
if cls._dataset is None: |
|
|
|
|
|
cls._dataset = datasets.load_dataset( |
|
"hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1" |
|
) |
|
|
|
def get_test_pipeline( |
|
self, |
|
model, |
|
tokenizer=None, |
|
image_processor=None, |
|
feature_extractor=None, |
|
processor=None, |
|
torch_dtype="float32", |
|
): |
|
image_classifier = ImageClassificationPipeline( |
|
model=model, |
|
tokenizer=tokenizer, |
|
feature_extractor=feature_extractor, |
|
image_processor=image_processor, |
|
processor=processor, |
|
torch_dtype=torch_dtype, |
|
top_k=2, |
|
) |
|
examples = [ |
|
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
] |
|
return image_classifier, examples |
|
|
|
def run_pipeline_test(self, image_classifier, examples): |
|
self._load_dataset() |
|
outputs = image_classifier("./tests/fixtures/tests_samples/COCO/000000039769.png") |
|
|
|
self.assertEqual( |
|
outputs, |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
) |
|
|
|
|
|
outputs = image_classifier( |
|
[ |
|
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
|
|
self._dataset[0]["image"], |
|
|
|
self._dataset[1]["image"], |
|
|
|
self._dataset[2]["image"], |
|
] |
|
) |
|
self.assertEqual( |
|
outputs, |
|
[ |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
], |
|
) |
|
|
|
for single_output in outputs: |
|
for output_element in single_output: |
|
compare_pipeline_output_to_hub_spec(output_element, ImageClassificationOutputElement) |
|
|
|
@require_torch |
|
def test_small_model_pt(self): |
|
small_model = "hf-internal-testing/tiny-random-vit" |
|
image_classifier = pipeline("image-classification", model=small_model) |
|
|
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
) |
|
|
|
outputs = image_classifier( |
|
[ |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
], |
|
top_k=2, |
|
) |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[ |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
], |
|
) |
|
|
|
@require_tf |
|
def test_small_model_tf(self): |
|
small_model = "hf-internal-testing/tiny-random-vit" |
|
image_classifier = pipeline("image-classification", model=small_model, framework="tf") |
|
|
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
) |
|
|
|
outputs = image_classifier( |
|
[ |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
], |
|
top_k=2, |
|
) |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[ |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
], |
|
) |
|
|
|
def test_custom_tokenizer(self): |
|
tokenizer = PreTrainedTokenizerBase() |
|
|
|
|
|
image_classifier = pipeline( |
|
"image-classification", model="hf-internal-testing/tiny-random-vit", tokenizer=tokenizer |
|
) |
|
|
|
self.assertIs(image_classifier.tokenizer, tokenizer) |
|
|
|
@require_torch |
|
def test_torch_float16_pipeline(self): |
|
image_classifier = pipeline( |
|
"image-classification", model="hf-internal-testing/tiny-random-vit", torch_dtype=torch.float16 |
|
) |
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
|
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=3), |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
) |
|
|
|
@require_torch |
|
def test_torch_bfloat16_pipeline(self): |
|
image_classifier = pipeline( |
|
"image-classification", model="hf-internal-testing/tiny-random-vit", torch_dtype=torch.bfloat16 |
|
) |
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
|
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=3), |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
) |
|
|
|
@slow |
|
@require_torch |
|
def test_perceiver(self): |
|
|
|
|
|
|
|
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-conv") |
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[ |
|
{"score": 0.4385, "label": "tabby, tabby cat"}, |
|
{"score": 0.321, "label": "tiger cat"}, |
|
{"score": 0.0502, "label": "Egyptian cat"}, |
|
{"score": 0.0137, "label": "crib, cot"}, |
|
{"score": 0.007, "label": "radiator"}, |
|
], |
|
) |
|
|
|
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-fourier") |
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[ |
|
{"score": 0.5658, "label": "tabby, tabby cat"}, |
|
{"score": 0.1309, "label": "tiger cat"}, |
|
{"score": 0.0722, "label": "Egyptian cat"}, |
|
{"score": 0.0707, "label": "remote control, remote"}, |
|
{"score": 0.0082, "label": "computer keyboard, keypad"}, |
|
], |
|
) |
|
|
|
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-learned") |
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[ |
|
{"score": 0.3022, "label": "tabby, tabby cat"}, |
|
{"score": 0.2362, "label": "Egyptian cat"}, |
|
{"score": 0.1856, "label": "tiger cat"}, |
|
{"score": 0.0324, "label": "remote control, remote"}, |
|
{"score": 0.0096, "label": "quilt, comforter, comfort, puff"}, |
|
], |
|
) |
|
|
|
@slow |
|
@require_torch |
|
def test_multilabel_classification(self): |
|
small_model = "hf-internal-testing/tiny-random-vit" |
|
|
|
|
|
image_classifier = pipeline("image-classification", model=small_model) |
|
image_classifier.model.config.problem_type = "multi_label_classification" |
|
|
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}], |
|
) |
|
|
|
outputs = image_classifier( |
|
[ |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
] |
|
) |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[ |
|
[{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}], |
|
[{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}], |
|
], |
|
) |
|
|
|
@slow |
|
@require_torch |
|
def test_function_to_apply(self): |
|
small_model = "hf-internal-testing/tiny-random-vit" |
|
|
|
|
|
image_classifier = pipeline("image-classification", model=small_model) |
|
|
|
outputs = image_classifier( |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
function_to_apply="sigmoid", |
|
) |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}], |
|
) |
|
|