|
import json |
|
from typing import Any, Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from accelerate import init_empty_weights |
|
from huggingface_hub import HfApi |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers.quantizers import HfQuantizer, get_module_from_name, register_quantization_config, register_quantizer |
|
from transformers.utils.quantization_config import QuantizationConfigMixin |
|
|
|
|
|
|
|
class Int8SymmetricLinear(torch.nn.Module): |
|
def __init__(self, in_features, out_features, bias, dtype=torch.float32): |
|
super().__init__() |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
|
|
self.register_buffer("weight", torch.zeros((out_features, in_features), dtype=torch.int8)) |
|
self.register_buffer("weight_scale", torch.zeros((out_features, 1), dtype=dtype)) |
|
|
|
if bias: |
|
self.register_buffer("bias", torch.zeros((self.out_features), dtype=dtype)) |
|
else: |
|
self.bias = None |
|
|
|
def forward(self, x): |
|
dequant_weight = self.weight * self.weight_scale |
|
output = F.linear(x, dequant_weight) |
|
if self.bias is not None: |
|
output = output + self.bias |
|
return output |
|
|
|
|
|
|
|
def _replace_with_int8_symmetric_linear( |
|
model, |
|
modules_to_not_convert=None, |
|
current_key_name=None, |
|
quantization_config=None, |
|
has_been_replaced=False, |
|
pre_quantized=False, |
|
): |
|
""" |
|
Recursively replaces nn.Linear modules with Int8SymmetricLinear modules. |
|
""" |
|
if current_key_name is None: |
|
current_key_name = [] |
|
|
|
for name, module in model.named_children(): |
|
current_key_name.append(name) |
|
|
|
if (isinstance(module, nn.Linear)) and name not in modules_to_not_convert: |
|
|
|
current_key_name_str = ".".join(current_key_name) |
|
if not any( |
|
(key + "." in current_key_name_str) or (key == current_key_name_str) for key in modules_to_not_convert |
|
): |
|
with init_empty_weights(include_buffers=True): |
|
in_features = module.in_features |
|
out_features = module.out_features |
|
model._modules[name] = Int8SymmetricLinear( |
|
in_features, out_features, module.bias is not None, dtype=module.weight.dtype |
|
) |
|
has_been_replaced = True |
|
model._modules[name].requires_grad_(False) |
|
|
|
if len(list(module.children())) > 0: |
|
_, has_been_replaced = _replace_with_int8_symmetric_linear( |
|
module, |
|
modules_to_not_convert, |
|
current_key_name, |
|
quantization_config, |
|
has_been_replaced=has_been_replaced, |
|
pre_quantized=pre_quantized, |
|
) |
|
|
|
current_key_name.pop(-1) |
|
return model, has_been_replaced |
|
|
|
|
|
def replace_with_int8_symmetric_linear( |
|
model, modules_to_not_convert=None, current_key_name=None, quantization_config=None, pre_quantized=False |
|
): |
|
""" |
|
Main function to replace model layers with INT8 symmetric quantized versions. |
|
""" |
|
modules_to_not_convert = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert |
|
|
|
if quantization_config.modules_to_not_convert is not None: |
|
modules_to_not_convert.extend(quantization_config.modules_to_not_convert) |
|
modules_to_not_convert = list(set(modules_to_not_convert)) |
|
|
|
model, has_been_replaced = _replace_with_int8_symmetric_linear( |
|
model, modules_to_not_convert, current_key_name, quantization_config, pre_quantized=pre_quantized |
|
) |
|
|
|
if not has_been_replaced: |
|
raise ValueError( |
|
"You are loading your model using INT8 symmetric quantization but no linear modules were found in your model." |
|
) |
|
|
|
return model |
|
|
|
|
|
@register_quantization_config("int8_symmetric") |
|
class Int8SymmetricConfig(QuantizationConfigMixin): |
|
""" |
|
Configuration for INT8 symmetric quantization. |
|
""" |
|
|
|
def __init__(self, modules_to_not_convert: Optional[list[str]] = None, **kwargs): |
|
self.quant_method = "int8_symmetric" |
|
self.modules_to_not_convert = modules_to_not_convert |
|
|
|
def __repr__(self): |
|
config_dict = self.to_dict() |
|
return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n" |
|
|
|
def to_diff_dict(self) -> dict[str, Any]: |
|
config_dict = self.to_dict() |
|
default_config_dict = Int8SymmetricConfig().to_dict() |
|
|
|
serializable_config_dict = {} |
|
for key, value in config_dict.items(): |
|
if value != default_config_dict[key]: |
|
serializable_config_dict[key] = value |
|
|
|
return serializable_config_dict |
|
|
|
|
|
@register_quantizer("int8_symmetric") |
|
class Int8SymmetricQuantizer(HfQuantizer): |
|
""" |
|
Implementation of INT8 symmetric quantization. |
|
|
|
""" |
|
|
|
requires_calibration = False |
|
requires_parameters_quantization = True |
|
|
|
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): |
|
super().__init__(quantization_config, **kwargs) |
|
self.quantization_config = quantization_config |
|
|
|
def _process_model_before_weight_loading(self, model, **kwargs): |
|
""" |
|
Replace model's linear layers with quantized versions before loading weights. |
|
""" |
|
self.modules_to_not_convert = self.quantization_config.modules_to_not_convert |
|
|
|
model = replace_with_int8_symmetric_linear( |
|
model, |
|
modules_to_not_convert=self.modules_to_not_convert, |
|
quantization_config=self.quantization_config, |
|
pre_quantized=self.pre_quantized, |
|
) |
|
|
|
def check_quantized_param( |
|
self, |
|
model, |
|
param_value: "torch.Tensor", |
|
param_name: str, |
|
state_dict: dict[str, Any], |
|
**kwargs, |
|
): |
|
module, tensor_name = get_module_from_name(model, param_name) |
|
|
|
if isinstance(module, Int8SymmetricLinear): |
|
if self.pre_quantized or tensor_name == "bias": |
|
if tensor_name == "weight" and param_value.dtype != torch.int8: |
|
raise ValueError("Expect quantized weights but got an unquantized weight") |
|
return False |
|
else: |
|
if tensor_name == "weight_scale": |
|
raise ValueError("Expect unquantized weights but got a quantized weight_scale") |
|
return True |
|
return False |
|
|
|
def create_quantized_param( |
|
self, |
|
model, |
|
param_value: "torch.Tensor", |
|
param_name: str, |
|
target_device: "torch.device", |
|
state_dict: dict[str, Any], |
|
unexpected_keys: Optional[list[str]] = None, |
|
): |
|
""" |
|
Quantizes weights to INT8 symmetric format. |
|
""" |
|
abs_max_per_row = torch.max(torch.abs(param_value), dim=1, keepdim=True)[0].clamp(min=1e-5) |
|
|
|
weight_scale = abs_max_per_row / 127.0 |
|
|
|
weight_quantized = torch.round(param_value / weight_scale).clamp(-128, 127).to(torch.int8) |
|
|
|
module, tensor_name = get_module_from_name(model, param_name) |
|
module._buffers[tensor_name] = weight_quantized.to(target_device) |
|
module._buffers["weight_scale"] = weight_scale.to(target_device) |
|
|
|
def update_missing_keys(self, model, missing_keys: list[str], prefix: str) -> list[str]: |
|
not_missing_keys = [] |
|
for name, module in model.named_modules(): |
|
if isinstance(module, Int8SymmetricLinear): |
|
for missing in missing_keys: |
|
if ( |
|
(name in missing or name in f"{prefix}.{missing}") |
|
and not missing.endswith(".weight") |
|
and not missing.endswith(".bias") |
|
): |
|
not_missing_keys.append(missing) |
|
return [k for k in missing_keys if k not in not_missing_keys] |
|
|
|
def _process_model_after_weight_loading(self, model, **kwargs): |
|
""" |
|
Post-processing after weights are loaded. |
|
""" |
|
return True |
|
|
|
def is_serializable(self, safe_serialization=None): |
|
return True |
|
|
|
@property |
|
def is_trainable(self) -> bool: |
|
return False |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
model_int8 = AutoModelForCausalLM.from_pretrained( |
|
"meta-llama/Llama-3.2-1B", quantization_config=Int8SymmetricConfig(), torch_dtype=torch.float, device_map="cpu" |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B") |
|
input_text = "once there is" |
|
inputs = tokenizer(input_text, return_tensors="pt").to("cpu") |
|
output = model_int8.generate( |
|
**inputs, |
|
max_length=100, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=2, |
|
) |
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(generated_text) |
|
|
|
|
|
output_model_dir = "Llama-3.2-1B-INT8-CUSTOM" |
|
model_int8.save_pretrained(output_model_dir) |
|
tokenizer.save_pretrained(output_model_dir) |
|
api = HfApi() |
|
repo_id = "medmekk/Llama-3.2-1B-INT8-CUSTOM" |
|
api.create_repo(repo_id, private=False) |
|
api.upload_folder(folder_path=output_model_dir, repo_id=repo_id, repo_type="model") |
|
|