|
from typing import Optional, Union |
|
|
|
import torch |
|
|
|
from transformers.models.bert.modeling_bert import BertModel |
|
|
|
from ...modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions |
|
|
|
|
|
class DummyBertModel(BertModel): |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[list[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
return super().forward(input_ids) |
|
|