|
import json |
|
import logging |
|
import os |
|
import random |
|
|
|
import numpy as np |
|
import torch |
|
from hydra.core.hydra_config import HydraConfig |
|
from omegaconf import DictConfig, open_dict |
|
from tqdm import tqdm |
|
|
|
from mmaudio.data.data_setup import setup_test_datasets |
|
from mmaudio.runner import Runner |
|
from mmaudio.utils.dist_utils import info_if_rank_zero |
|
from mmaudio.utils.logger import TensorboardLogger |
|
|
|
local_rank = int(os.environ['LOCAL_RANK']) |
|
world_size = int(os.environ['WORLD_SIZE']) |
|
|
|
|
|
def sample(cfg: DictConfig): |
|
|
|
num_gpus = world_size |
|
run_dir = HydraConfig.get().run.dir |
|
|
|
|
|
log = TensorboardLogger(cfg.exp_id, |
|
run_dir, |
|
logging.getLogger(), |
|
is_rank0=(local_rank == 0), |
|
enable_email=cfg.enable_email and not cfg.debug) |
|
|
|
info_if_rank_zero(log, f'All configuration: {cfg}') |
|
info_if_rank_zero(log, f'Number of GPUs detected: {num_gpus}') |
|
|
|
|
|
torch.cuda.set_device(local_rank) |
|
torch.backends.cudnn.benchmark = cfg.cudnn_benchmark |
|
|
|
|
|
info_if_rank_zero(log, f'Number of dataloader workers (per GPU): {cfg.num_workers}') |
|
|
|
|
|
torch.manual_seed(cfg.seed) |
|
np.random.seed(cfg.seed) |
|
random.seed(cfg.seed) |
|
|
|
|
|
info_if_rank_zero(log, f'Configuration: {cfg}') |
|
info_if_rank_zero(log, f'Batch size (per GPU): {cfg.batch_size}') |
|
|
|
|
|
runner = Runner(cfg, log=log, run_path=run_dir, for_training=False).enter_val() |
|
|
|
|
|
if cfg['weights'] is not None: |
|
info_if_rank_zero(log, f'Loading weights from the disk: {cfg["weights"]}') |
|
runner.load_weights(cfg['weights']) |
|
cfg['weights'] = None |
|
else: |
|
weights = runner.get_final_ema_weight_path() |
|
if weights is not None: |
|
info_if_rank_zero(log, f'Automatically finding weight: {weights}') |
|
runner.load_weights(weights) |
|
|
|
|
|
dataset, sampler, loader = setup_test_datasets(cfg) |
|
data_cfg = cfg.data.ExtractedVGG_test |
|
with open_dict(data_cfg): |
|
if cfg.output_name is not None: |
|
|
|
data_cfg.tag = f'{data_cfg.tag}-{cfg.output_name}' |
|
|
|
|
|
audio_path = None |
|
for curr_iter, data in enumerate(tqdm(loader)): |
|
new_audio_path = runner.inference_pass(data, curr_iter, data_cfg) |
|
if audio_path is None: |
|
audio_path = new_audio_path |
|
else: |
|
assert audio_path == new_audio_path, 'Different audio path detected' |
|
|
|
info_if_rank_zero(log, f'Inference completed. Audio path: {audio_path}') |
|
output_metrics = runner.eval(audio_path, curr_iter, data_cfg) |
|
|
|
if local_rank == 0: |
|
|
|
output_metrics_path = os.path.join(run_dir, f'{data_cfg.tag}-output_metrics.json') |
|
with open(output_metrics_path, 'w') as f: |
|
json.dump(output_metrics, f, indent=4) |
|
|