|
""" |
|
trainer.py - wrapper and utility functions for network training |
|
Compute loss, back-prop, update parameters, logging, etc. |
|
""" |
|
import os |
|
from pathlib import Path |
|
from typing import Optional, Union |
|
|
|
import torch |
|
import torch.distributed |
|
import torch.optim as optim |
|
from av_bench.evaluate import evaluate |
|
from av_bench.extract import extract |
|
from nitrous_ema import PostHocEMA |
|
from omegaconf import DictConfig |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
|
|
from mmaudio.model.flow_matching import FlowMatching |
|
from mmaudio.model.networks import get_my_mmaudio |
|
from mmaudio.model.sequence_config import CONFIG_16K, CONFIG_44K |
|
from mmaudio.model.utils.features_utils import FeaturesUtils |
|
from mmaudio.model.utils.parameter_groups import get_parameter_groups |
|
from mmaudio.model.utils.sample_utils import log_normal_sample |
|
from mmaudio.utils.dist_utils import (info_if_rank_zero, local_rank, string_if_rank_zero) |
|
from mmaudio.utils.log_integrator import Integrator |
|
from mmaudio.utils.logger import TensorboardLogger |
|
from mmaudio.utils.time_estimator import PartialTimeEstimator, TimeEstimator |
|
from mmaudio.utils.video_joiner import VideoJoiner |
|
|
|
|
|
class Runner: |
|
|
|
def __init__(self, |
|
cfg: DictConfig, |
|
log: TensorboardLogger, |
|
run_path: Union[str, Path], |
|
for_training: bool = True, |
|
latent_mean: Optional[torch.Tensor] = None, |
|
latent_std: Optional[torch.Tensor] = None): |
|
self.exp_id = cfg.exp_id |
|
self.use_amp = cfg.amp |
|
self.enable_grad_scaler = cfg.enable_grad_scaler |
|
self.for_training = for_training |
|
self.cfg = cfg |
|
|
|
if cfg.model.endswith('16k'): |
|
self.seq_cfg = CONFIG_16K |
|
mode = '16k' |
|
elif cfg.model.endswith('44k'): |
|
self.seq_cfg = CONFIG_44K |
|
mode = '44k' |
|
else: |
|
raise ValueError(f'Unknown model: {cfg.model}') |
|
|
|
self.sample_rate = self.seq_cfg.sampling_rate |
|
self.duration_sec = self.seq_cfg.duration |
|
|
|
|
|
empty_string_feat = torch.load('./ext_weights/empty_string.pth', weights_only=True)[0] |
|
self.network = DDP(get_my_mmaudio(cfg.model, |
|
latent_mean=latent_mean, |
|
latent_std=latent_std, |
|
empty_string_feat=empty_string_feat).cuda(), |
|
device_ids=[local_rank], |
|
broadcast_buffers=False) |
|
if cfg.compile: |
|
|
|
|
|
|
|
self.train_fn = torch.compile(self.train_fn) |
|
self.val_fn = torch.compile(self.val_fn) |
|
|
|
self.fm = FlowMatching(cfg.sampling.min_sigma, |
|
inference_mode=cfg.sampling.method, |
|
num_steps=cfg.sampling.num_steps) |
|
|
|
|
|
if for_training and cfg.ema.enable and local_rank == 0: |
|
self.ema = PostHocEMA(self.network.module, |
|
sigma_rels=cfg.ema.sigma_rels, |
|
update_every=cfg.ema.update_every, |
|
checkpoint_every_num_steps=cfg.ema.checkpoint_every, |
|
checkpoint_folder=cfg.ema.checkpoint_folder, |
|
step_size_correction=True).cuda() |
|
self.ema_start = cfg.ema.start |
|
else: |
|
self.ema = None |
|
|
|
self.rng = torch.Generator(device='cuda') |
|
self.rng.manual_seed(cfg['seed'] + local_rank) |
|
|
|
|
|
if mode == '16k': |
|
self.features = FeaturesUtils( |
|
tod_vae_ckpt=cfg['vae_16k_ckpt'], |
|
bigvgan_vocoder_ckpt=cfg['bigvgan_vocoder_ckpt'], |
|
synchformer_ckpt=cfg['synchformer_ckpt'], |
|
enable_conditions=True, |
|
mode=mode, |
|
need_vae_encoder=False, |
|
) |
|
elif mode == '44k': |
|
self.features = FeaturesUtils( |
|
tod_vae_ckpt=cfg['vae_44k_ckpt'], |
|
synchformer_ckpt=cfg['synchformer_ckpt'], |
|
enable_conditions=True, |
|
mode=mode, |
|
need_vae_encoder=False, |
|
) |
|
self.features = self.features.cuda().eval() |
|
|
|
if cfg.compile: |
|
self.features.compile() |
|
|
|
|
|
self.log_normal_sampling_mean = cfg.sampling.mean |
|
self.log_normal_sampling_scale = cfg.sampling.scale |
|
self.null_condition_probability = cfg.null_condition_probability |
|
self.cfg_strength = cfg.cfg_strength |
|
|
|
|
|
self.log = log |
|
self.run_path = Path(run_path) |
|
vgg_cfg = cfg.data.VGGSound |
|
if for_training: |
|
self.val_video_joiner = VideoJoiner(vgg_cfg.root, self.run_path / 'val-sampled-videos', |
|
self.sample_rate, self.duration_sec) |
|
else: |
|
self.test_video_joiner = VideoJoiner(vgg_cfg.root, |
|
self.run_path / 'test-sampled-videos', |
|
self.sample_rate, self.duration_sec) |
|
string_if_rank_zero(self.log, 'model_size', |
|
f'{sum([param.nelement() for param in self.network.parameters()])}') |
|
string_if_rank_zero( |
|
self.log, 'number_of_parameters_that_require_gradient: ', |
|
str( |
|
sum([ |
|
param.nelement() |
|
for param in filter(lambda p: p.requires_grad, self.network.parameters()) |
|
]))) |
|
info_if_rank_zero(self.log, 'torch version: ' + torch.__version__) |
|
self.train_integrator = Integrator(self.log, distributed=True) |
|
self.val_integrator = Integrator(self.log, distributed=True) |
|
|
|
|
|
if for_training: |
|
self.enter_train() |
|
parameter_groups = get_parameter_groups(self.network, cfg, print_log=(local_rank == 0)) |
|
self.optimizer = optim.AdamW(parameter_groups, |
|
lr=cfg['learning_rate'], |
|
weight_decay=cfg['weight_decay'], |
|
betas=[0.9, 0.95], |
|
eps=1e-6 if self.use_amp else 1e-8, |
|
fused=True) |
|
if self.enable_grad_scaler: |
|
self.scaler = torch.amp.GradScaler(init_scale=2048) |
|
self.clip_grad_norm = cfg['clip_grad_norm'] |
|
|
|
|
|
linear_warmup_steps = cfg['linear_warmup_steps'] |
|
|
|
def warmup(currrent_step: int): |
|
return (currrent_step + 1) / (linear_warmup_steps + 1) |
|
|
|
warmup_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=warmup) |
|
|
|
|
|
if cfg['lr_schedule'] == 'constant': |
|
next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda _: 1) |
|
elif cfg['lr_schedule'] == 'poly': |
|
total_num_iter = cfg['iterations'] |
|
next_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, |
|
lr_lambda=lambda x: |
|
(1 - (x / total_num_iter))**0.9) |
|
elif cfg['lr_schedule'] == 'step': |
|
next_scheduler = optim.lr_scheduler.MultiStepLR(self.optimizer, |
|
cfg['lr_schedule_steps'], |
|
cfg['lr_schedule_gamma']) |
|
else: |
|
raise NotImplementedError |
|
|
|
self.scheduler = optim.lr_scheduler.SequentialLR(self.optimizer, |
|
[warmup_scheduler, next_scheduler], |
|
[linear_warmup_steps]) |
|
|
|
|
|
self.log_text_interval = cfg['log_text_interval'] |
|
self.log_extra_interval = cfg['log_extra_interval'] |
|
self.save_weights_interval = cfg['save_weights_interval'] |
|
self.save_checkpoint_interval = cfg['save_checkpoint_interval'] |
|
self.save_copy_iterations = cfg['save_copy_iterations'] |
|
self.num_iterations = cfg['num_iterations'] |
|
if cfg['debug']: |
|
self.log_text_interval = self.log_extra_interval = 1 |
|
|
|
|
|
self.log.batch_timer = TimeEstimator(self.num_iterations, self.log_text_interval) |
|
|
|
self.log.data_timer = PartialTimeEstimator(self.num_iterations, 1, ema_alpha=0.9) |
|
else: |
|
self.enter_val() |
|
|
|
def train_fn( |
|
self, |
|
clip_f: torch.Tensor, |
|
sync_f: torch.Tensor, |
|
text_f: torch.Tensor, |
|
a_mean: torch.Tensor, |
|
a_std: torch.Tensor, |
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
|
a_randn = torch.empty_like(a_mean).normal_(generator=self.rng) |
|
x1 = a_mean + a_std * a_randn |
|
bs = x1.shape[0] |
|
|
|
|
|
x1 = self.network.module.normalize(x1) |
|
|
|
t = log_normal_sample(x1, |
|
generator=self.rng, |
|
m=self.log_normal_sampling_mean, |
|
s=self.log_normal_sampling_scale) |
|
x0, x1, xt, (clip_f, sync_f, text_f) = self.fm.get_x0_xt_c(x1, |
|
t, |
|
Cs=[clip_f, sync_f, text_f], |
|
generator=self.rng) |
|
|
|
|
|
samples = torch.rand(bs, device=x1.device, generator=self.rng) |
|
null_video = (samples < self.null_condition_probability) |
|
clip_f[null_video] = self.network.module.empty_clip_feat |
|
sync_f[null_video] = self.network.module.empty_sync_feat |
|
|
|
samples = torch.rand(bs, device=x1.device, generator=self.rng) |
|
null_text = (samples < self.null_condition_probability) |
|
text_f[null_text] = self.network.module.empty_string_feat |
|
|
|
pred_v = self.network(xt, clip_f, sync_f, text_f, t) |
|
loss = self.fm.loss(pred_v, x0, x1) |
|
mean_loss = loss.mean() |
|
return x1, loss, mean_loss, t |
|
|
|
def val_fn( |
|
self, |
|
clip_f: torch.Tensor, |
|
sync_f: torch.Tensor, |
|
text_f: torch.Tensor, |
|
x1: torch.Tensor, |
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
bs = x1.shape[0] |
|
|
|
x1 = self.network.module.normalize(x1) |
|
t = log_normal_sample(x1, |
|
generator=self.rng, |
|
m=self.log_normal_sampling_mean, |
|
s=self.log_normal_sampling_scale) |
|
x0, x1, xt, (clip_f, sync_f, text_f) = self.fm.get_x0_xt_c(x1, |
|
t, |
|
Cs=[clip_f, sync_f, text_f], |
|
generator=self.rng) |
|
|
|
|
|
samples = torch.rand(bs, device=x1.device, generator=self.rng) |
|
|
|
null_video = (samples < self.null_condition_probability) |
|
|
|
clip_f[null_video] = self.network.module.empty_clip_feat |
|
sync_f[null_video] = self.network.module.empty_sync_feat |
|
|
|
samples = torch.rand(bs, device=x1.device, generator=self.rng) |
|
null_text = (samples < self.null_condition_probability) |
|
text_f[null_text] = self.network.module.empty_string_feat |
|
|
|
pred_v = self.network(xt, clip_f, sync_f, text_f, t) |
|
|
|
loss = self.fm.loss(pred_v, x0, x1) |
|
mean_loss = loss.mean() |
|
return loss, mean_loss, t |
|
|
|
def train_pass(self, data, it: int = 0): |
|
|
|
if not self.for_training: |
|
raise ValueError('train_pass() should not be called when not training.') |
|
|
|
self.enter_train() |
|
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16): |
|
clip_f = data['clip_features'].cuda(non_blocking=True) |
|
sync_f = data['sync_features'].cuda(non_blocking=True) |
|
text_f = data['text_features'].cuda(non_blocking=True) |
|
video_exist = data['video_exist'].cuda(non_blocking=True) |
|
text_exist = data['text_exist'].cuda(non_blocking=True) |
|
a_mean = data['a_mean'].cuda(non_blocking=True) |
|
a_std = data['a_std'].cuda(non_blocking=True) |
|
|
|
|
|
clip_f[~video_exist] = self.network.module.empty_clip_feat |
|
sync_f[~video_exist] = self.network.module.empty_sync_feat |
|
text_f[~text_exist] = self.network.module.empty_string_feat |
|
|
|
self.log.data_timer.end() |
|
if it % self.log_extra_interval == 0: |
|
unmasked_clip_f = clip_f.clone() |
|
unmasked_sync_f = sync_f.clone() |
|
unmasked_text_f = text_f.clone() |
|
x1, loss, mean_loss, t = self.train_fn(clip_f, sync_f, text_f, a_mean, a_std) |
|
|
|
self.train_integrator.add_dict({'loss': mean_loss}) |
|
|
|
if it % self.log_text_interval == 0 and it != 0: |
|
self.train_integrator.add_scalar('lr', self.scheduler.get_last_lr()[0]) |
|
self.train_integrator.add_binned_tensor('binned_loss', loss, t) |
|
self.train_integrator.finalize('train', it) |
|
self.train_integrator.reset_except_hooks() |
|
|
|
|
|
self.optimizer.zero_grad(set_to_none=True) |
|
if self.enable_grad_scaler: |
|
self.scaler.scale(mean_loss).backward() |
|
self.scaler.unscale_(self.optimizer) |
|
grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(), |
|
self.clip_grad_norm) |
|
self.scaler.step(self.optimizer) |
|
self.scaler.update() |
|
else: |
|
mean_loss.backward() |
|
grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(), |
|
self.clip_grad_norm) |
|
self.optimizer.step() |
|
|
|
if self.ema is not None and it >= self.ema_start: |
|
self.ema.update() |
|
self.scheduler.step() |
|
self.integrator.add_scalar('grad_norm', grad_norm) |
|
|
|
self.enter_val() |
|
with torch.amp.autocast('cuda', enabled=self.use_amp, |
|
dtype=torch.bfloat16), torch.inference_mode(): |
|
try: |
|
if it % self.log_extra_interval == 0: |
|
|
|
|
|
x1 = self.network.module.unnormalize(x1[0:1]) |
|
mel = self.features.decode(x1) |
|
audio = self.features.vocode(mel).cpu()[0] |
|
self.log.log_spectrogram('train', f'spec-gt-r{local_rank}', mel.cpu()[0], it) |
|
self.log.log_audio('train', |
|
f'audio-gt-r{local_rank}', |
|
audio, |
|
it, |
|
sample_rate=self.sample_rate) |
|
|
|
|
|
x0 = torch.empty_like(x1[0:1]).normal_(generator=self.rng) |
|
clip_f = unmasked_clip_f[0:1] |
|
sync_f = unmasked_sync_f[0:1] |
|
text_f = unmasked_text_f[0:1] |
|
conditions = self.network.module.preprocess_conditions(clip_f, sync_f, text_f) |
|
empty_conditions = self.network.module.get_empty_conditions(x0.shape[0]) |
|
cfg_ode_wrapper = lambda t, x: self.network.module.ode_wrapper( |
|
t, x, conditions, empty_conditions, self.cfg_strength) |
|
x1_hat = self.fm.to_data(cfg_ode_wrapper, x0) |
|
x1_hat = self.network.module.unnormalize(x1_hat) |
|
mel = self.features.decode(x1_hat) |
|
audio = self.features.vocode(mel).cpu()[0] |
|
self.log.log_spectrogram('train', f'spec-r{local_rank}', mel.cpu()[0], it) |
|
self.log.log_audio('train', |
|
f'audio-r{local_rank}', |
|
audio, |
|
it, |
|
sample_rate=self.sample_rate) |
|
except Exception as e: |
|
self.log.warning(f'Error in extra logging: {e}') |
|
if self.cfg.debug: |
|
raise |
|
|
|
|
|
save_copy = it in self.save_copy_iterations |
|
|
|
if (it % self.save_weights_interval == 0 and it != 0) or save_copy: |
|
self.save_weights(it) |
|
|
|
if it % self.save_checkpoint_interval == 0 and it != 0: |
|
self.save_checkpoint(it, save_copy=save_copy) |
|
|
|
self.log.data_timer.start() |
|
|
|
@torch.inference_mode() |
|
def validation_pass(self, data, it: int = 0): |
|
self.enter_val() |
|
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16): |
|
clip_f = data['clip_features'].cuda(non_blocking=True) |
|
sync_f = data['sync_features'].cuda(non_blocking=True) |
|
text_f = data['text_features'].cuda(non_blocking=True) |
|
video_exist = data['video_exist'].cuda(non_blocking=True) |
|
text_exist = data['text_exist'].cuda(non_blocking=True) |
|
a_mean = data['a_mean'].cuda(non_blocking=True) |
|
a_std = data['a_std'].cuda(non_blocking=True) |
|
|
|
clip_f[~video_exist] = self.network.module.empty_clip_feat |
|
sync_f[~video_exist] = self.network.module.empty_sync_feat |
|
text_f[~text_exist] = self.network.module.empty_string_feat |
|
a_randn = torch.empty_like(a_mean).normal_(generator=self.rng) |
|
x1 = a_mean + a_std * a_randn |
|
|
|
self.log.data_timer.end() |
|
loss, mean_loss, t = self.val_fn(clip_f.clone(), sync_f.clone(), text_f.clone(), x1) |
|
|
|
self.val_integrator.add_binned_tensor('binned_loss', loss, t) |
|
self.val_integrator.add_dict({'loss': mean_loss}) |
|
|
|
self.log.data_timer.start() |
|
|
|
@torch.inference_mode() |
|
def inference_pass(self, |
|
data, |
|
it: int, |
|
data_cfg: DictConfig, |
|
*, |
|
save_eval: bool = True) -> Path: |
|
self.enter_val() |
|
with torch.amp.autocast('cuda', enabled=self.use_amp, dtype=torch.bfloat16): |
|
clip_f = data['clip_features'].cuda(non_blocking=True) |
|
sync_f = data['sync_features'].cuda(non_blocking=True) |
|
text_f = data['text_features'].cuda(non_blocking=True) |
|
video_exist = data['video_exist'].cuda(non_blocking=True) |
|
text_exist = data['text_exist'].cuda(non_blocking=True) |
|
a_mean = data['a_mean'].cuda(non_blocking=True) |
|
|
|
clip_f[~video_exist] = self.network.module.empty_clip_feat |
|
sync_f[~video_exist] = self.network.module.empty_sync_feat |
|
text_f[~text_exist] = self.network.module.empty_string_feat |
|
|
|
|
|
x0 = torch.empty_like(a_mean).normal_(generator=self.rng) |
|
conditions = self.network.module.preprocess_conditions(clip_f, sync_f, text_f) |
|
empty_conditions = self.network.module.get_empty_conditions(x0.shape[0]) |
|
cfg_ode_wrapper = lambda t, x: self.network.module.ode_wrapper( |
|
t, x, conditions, empty_conditions, self.cfg_strength) |
|
x1_hat = self.fm.to_data(cfg_ode_wrapper, x0) |
|
x1_hat = self.network.module.unnormalize(x1_hat) |
|
mel = self.features.decode(x1_hat) |
|
audio = self.features.vocode(mel).cpu() |
|
for i in range(audio.shape[0]): |
|
video_id = data['id'][i] |
|
if (not self.for_training) and i == 0: |
|
|
|
self.test_video_joiner.join(video_id, f'{video_id}', audio[i].transpose(0, 1)) |
|
|
|
if data_cfg.output_subdir is not None: |
|
|
|
if save_eval: |
|
iter_naming = f'{it:09d}' |
|
else: |
|
iter_naming = 'val-cache' |
|
audio_dir = self.log.log_audio(iter_naming, |
|
f'{video_id}', |
|
audio[i], |
|
it=None, |
|
sample_rate=self.sample_rate, |
|
subdir=Path(data_cfg.output_subdir)) |
|
if save_eval and i == 0: |
|
self.val_video_joiner.join(video_id, f'{iter_naming}-{video_id}', |
|
audio[i].transpose(0, 1)) |
|
else: |
|
|
|
audio_dir = self.log.log_audio(f'{data_cfg.tag}-sampled', |
|
f'{video_id}', |
|
audio[i], |
|
it=None, |
|
sample_rate=self.sample_rate) |
|
|
|
return Path(audio_dir) |
|
|
|
@torch.inference_mode() |
|
def eval(self, audio_dir: Path, it: int, data_cfg: DictConfig) -> dict[str, float]: |
|
with torch.amp.autocast('cuda', enabled=False): |
|
if local_rank == 0: |
|
extract(audio_path=audio_dir, |
|
output_path=audio_dir / 'cache', |
|
device='cuda', |
|
batch_size=32, |
|
audio_length=8) |
|
output_metrics = evaluate(gt_audio_cache=Path(data_cfg.gt_cache), |
|
pred_audio_cache=audio_dir / 'cache') |
|
for k, v in output_metrics.items(): |
|
|
|
|
|
self.log.log_scalar(f'{data_cfg.tag}/{k}', v, it) |
|
self.log.info(f'{data_cfg.tag}/{k:<10}: {v:.10f}') |
|
else: |
|
output_metrics = None |
|
|
|
return output_metrics |
|
|
|
def save_weights(self, it, save_copy=False): |
|
if local_rank != 0: |
|
return |
|
|
|
os.makedirs(self.run_path, exist_ok=True) |
|
if save_copy: |
|
model_path = self.run_path / f'{self.exp_id}_{it}.pth' |
|
torch.save(self.network.module.state_dict(), model_path) |
|
self.log.info(f'Network weights saved to {model_path}.') |
|
|
|
|
|
model_path = self.run_path / f'{self.exp_id}_last.pth' |
|
if model_path.exists(): |
|
shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow')) |
|
model_path.replace(shadow_path) |
|
self.log.info(f'Network weights shadowed to {shadow_path}.') |
|
|
|
torch.save(self.network.module.state_dict(), model_path) |
|
self.log.info(f'Network weights saved to {model_path}.') |
|
|
|
def save_checkpoint(self, it, save_copy=False): |
|
if local_rank != 0: |
|
return |
|
|
|
checkpoint = { |
|
'it': it, |
|
'weights': self.network.module.state_dict(), |
|
'optimizer': self.optimizer.state_dict(), |
|
'scheduler': self.scheduler.state_dict(), |
|
'ema': self.ema.state_dict() if self.ema is not None else None, |
|
} |
|
|
|
os.makedirs(self.run_path, exist_ok=True) |
|
if save_copy: |
|
model_path = self.run_path / f'{self.exp_id}_ckpt_{it}.pth' |
|
torch.save(checkpoint, model_path) |
|
self.log.info(f'Checkpoint saved to {model_path}.') |
|
|
|
|
|
model_path = self.run_path / f'{self.exp_id}_ckpt_last.pth' |
|
if model_path.exists(): |
|
shadow_path = model_path.with_name(model_path.name.replace('last', 'shadow')) |
|
model_path.replace(shadow_path) |
|
self.log.info(f'Checkpoint shadowed to {shadow_path}.') |
|
|
|
torch.save(checkpoint, model_path) |
|
self.log.info(f'Checkpoint saved to {model_path}.') |
|
|
|
def get_latest_checkpoint_path(self): |
|
ckpt_path = self.run_path / f'{self.exp_id}_ckpt_last.pth' |
|
if not ckpt_path.exists(): |
|
info_if_rank_zero(self.log, f'No checkpoint found at {ckpt_path}.') |
|
return None |
|
return ckpt_path |
|
|
|
def get_latest_weight_path(self): |
|
weight_path = self.run_path / f'{self.exp_id}_last.pth' |
|
if not weight_path.exists(): |
|
self.log.info(f'No weight found at {weight_path}.') |
|
return None |
|
return weight_path |
|
|
|
def get_final_ema_weight_path(self): |
|
weight_path = self.run_path / f'{self.exp_id}_ema_final.pth' |
|
if not weight_path.exists(): |
|
self.log.info(f'No weight found at {weight_path}.') |
|
return None |
|
return weight_path |
|
|
|
def load_checkpoint(self, path): |
|
|
|
map_location = 'cuda:%d' % local_rank |
|
checkpoint = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True) |
|
|
|
it = checkpoint['it'] |
|
weights = checkpoint['weights'] |
|
optimizer = checkpoint['optimizer'] |
|
scheduler = checkpoint['scheduler'] |
|
if self.ema is not None: |
|
self.ema.load_state_dict(checkpoint['ema']) |
|
self.log.info(f'EMA states loaded from step {self.ema.step}') |
|
|
|
map_location = 'cuda:%d' % local_rank |
|
self.network.module.load_state_dict(weights) |
|
self.optimizer.load_state_dict(optimizer) |
|
self.scheduler.load_state_dict(scheduler) |
|
|
|
self.log.info(f'Global iteration {it} loaded.') |
|
self.log.info('Network weights, optimizer states, and scheduler states loaded.') |
|
|
|
return it |
|
|
|
def load_weights_in_memory(self, src_dict): |
|
self.network.module.load_weights(src_dict) |
|
self.log.info('Network weights loaded from memory.') |
|
|
|
def load_weights(self, path): |
|
|
|
map_location = 'cuda:%d' % local_rank |
|
src_dict = torch.load(path, map_location={'cuda:0': map_location}, weights_only=True) |
|
|
|
self.log.info(f'Importing network weights from {path}...') |
|
self.load_weights_in_memory(src_dict) |
|
|
|
def weights(self): |
|
return self.network.module.state_dict() |
|
|
|
def enter_train(self): |
|
self.integrator = self.train_integrator |
|
self.network.train() |
|
return self |
|
|
|
def enter_val(self): |
|
self.network.eval() |
|
return self |
|
|