File size: 63,718 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import ast
import collections
import functools
import json
import operator
import os
import re
import sys
import time
from typing import Any, Dict, List, Optional, Union

import requests
from get_ci_error_statistics import get_jobs
from get_previous_daily_ci import get_last_daily_ci_reports, get_last_daily_ci_run, get_last_daily_ci_workflow_run_id
from huggingface_hub import HfApi
from slack_sdk import WebClient


# A map associating the job names (specified by `inputs.job` in a workflow file) with the keys of
# `additional_files`.
job_to_test_map = {
    "run_models_gpu": "Models",
    "run_trainer_and_fsdp_gpu": "Trainer & FSDP",
    "run_pipelines_torch_gpu": "PyTorch pipelines",
    "run_pipelines_tf_gpu": "TensorFlow pipelines",
    "run_examples_gpu": "Examples directory",
    "run_torch_cuda_extensions_gpu": "DeepSpeed",
    "run_quantization_torch_gpu": "Quantization",
}

# The values are used as the file names where to save the corresponding CI job results.
test_to_result_name = {
    "Models": "model",
    "Trainer & FSDP": "trainer_and_fsdp",
    "PyTorch pipelines": "torch_pipeline",
    "TensorFlow pipelines": "tf_pipeline",
    "Examples directory": "example",
    "DeepSpeed": "deepspeed",
    "Quantization": "quantization",
}

NON_MODEL_TEST_MODULES = [
    "deepspeed",
    "extended",
    "fixtures",
    "generation",
    "onnx",
    "optimization",
    "pipelines",
    "sagemaker",
    "trainer",
    "utils",
    "fsdp",
    "quantization",
]


def handle_test_results(test_results):
    expressions = test_results.split(" ")

    failed = 0
    success = 0

    # When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
    # When it is too long, those signs are not present.
    time_spent = expressions[-2] if "=" in expressions[-1] else expressions[-1]

    for i, expression in enumerate(expressions):
        if "failed" in expression:
            failed += int(expressions[i - 1])
        if "passed" in expression:
            success += int(expressions[i - 1])

    return failed, success, time_spent


def handle_stacktraces(test_results):
    # These files should follow the following architecture:
    # === FAILURES ===
    # <path>:<line>: Error ...
    # <path>:<line>: Error ...
    # <empty line>

    total_stacktraces = test_results.split("\n")[1:-1]
    stacktraces = []
    for stacktrace in total_stacktraces:
        try:
            line = stacktrace[: stacktrace.index(" ")].split(":")[-2]
            error_message = stacktrace[stacktrace.index(" ") :]

            stacktraces.append(f"(line {line}) {error_message}")
        except Exception:
            stacktraces.append("Cannot retrieve error message.")

    return stacktraces


def dicts_to_sum(objects: Union[Dict[str, Dict], List[dict]]):
    if isinstance(objects, dict):
        lists = objects.values()
    else:
        lists = objects

    # Convert each dictionary to counter
    counters = map(collections.Counter, lists)
    # Sum all the counters
    return functools.reduce(operator.add, counters)


class Message:
    def __init__(
        self,
        title: str,
        ci_title: str,
        model_results: Dict,
        additional_results: Dict,
        selected_warnings: Optional[List] = None,
        prev_ci_artifacts=None,
        other_ci_artifacts=None,
    ):
        self.title = title
        self.ci_title = ci_title

        # Failures and success of the modeling tests
        self.n_model_success = sum(r["success"] for r in model_results.values())
        self.n_model_single_gpu_failures = sum(dicts_to_sum(r["failed"])["single"] for r in model_results.values())
        self.n_model_multi_gpu_failures = sum(dicts_to_sum(r["failed"])["multi"] for r in model_results.values())

        # Some suites do not have a distinction between single and multi GPU.
        self.n_model_unknown_failures = sum(dicts_to_sum(r["failed"])["unclassified"] for r in model_results.values())
        self.n_model_failures = (
            self.n_model_single_gpu_failures + self.n_model_multi_gpu_failures + self.n_model_unknown_failures
        )

        # Failures and success of the additional tests
        self.n_additional_success = sum(r["success"] for r in additional_results.values())

        if len(additional_results) > 0:
            # `dicts_to_sum` uses `dicts_to_sum` which requires a non empty dictionary. Let's just add an empty entry.
            all_additional_failures = dicts_to_sum([r["failed"] for r in additional_results.values()])
            self.n_additional_single_gpu_failures = all_additional_failures["single"]
            self.n_additional_multi_gpu_failures = all_additional_failures["multi"]
            self.n_additional_unknown_gpu_failures = all_additional_failures["unclassified"]
        else:
            self.n_additional_single_gpu_failures = 0
            self.n_additional_multi_gpu_failures = 0
            self.n_additional_unknown_gpu_failures = 0

        self.n_additional_failures = (
            self.n_additional_single_gpu_failures
            + self.n_additional_multi_gpu_failures
            + self.n_additional_unknown_gpu_failures
        )

        # Results
        self.n_failures = self.n_model_failures + self.n_additional_failures
        self.n_success = self.n_model_success + self.n_additional_success
        self.n_tests = self.n_failures + self.n_success

        self.model_results = model_results
        self.additional_results = additional_results

        self.thread_ts = None

        if selected_warnings is None:
            selected_warnings = []
        self.selected_warnings = selected_warnings

        self.prev_ci_artifacts = prev_ci_artifacts
        self.other_ci_artifacts = other_ci_artifacts

    @property
    def time(self) -> str:
        all_results = [*self.model_results.values(), *self.additional_results.values()]
        time_spent = [r["time_spent"].split(", ")[0] for r in all_results if len(r["time_spent"])]
        total_secs = 0

        for time in time_spent:
            time_parts = time.split(":")

            # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
            if len(time_parts) == 1:
                time_parts = [0, 0, time_parts[0]]

            hours, minutes, seconds = int(time_parts[0]), int(time_parts[1]), float(time_parts[2])
            total_secs += hours * 3600 + minutes * 60 + seconds

        hours, minutes, seconds = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
        return f"{int(hours)}h{int(minutes)}m{int(seconds)}s"

    @property
    def header(self) -> Dict:
        return {"type": "header", "text": {"type": "plain_text", "text": self.title}}

    @property
    def ci_title_section(self) -> Dict:
        return {"type": "section", "text": {"type": "mrkdwn", "text": self.ci_title}}

    @property
    def no_failures(self) -> Dict:
        return {
            "type": "section",
            "text": {
                "type": "plain_text",
                "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.",
                "emoji": True,
            },
            "accessory": {
                "type": "button",
                "text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
                "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}",
            },
        }

    @property
    def failures(self) -> Dict:
        return {
            "type": "section",
            "text": {
                "type": "plain_text",
                "text": (
                    f"There were {self.n_failures} failures, out of {self.n_tests} tests.\n"
                    f"The suite ran in {self.time}."
                ),
                "emoji": True,
            },
            "accessory": {
                "type": "button",
                "text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
                "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}",
            },
        }

    @property
    def warnings(self) -> Dict:
        # If something goes wrong, let's avoid the CI report failing to be sent.
        button_text = "Check warnings (Link not found)"
        # Use the workflow run link
        job_link = f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}"

        for job in github_actions_jobs:
            if "Extract warnings in CI artifacts" in job["name"] and job["conclusion"] == "success":
                button_text = "Check warnings"
                # Use the actual job link
                job_link = job["html_url"]
                break

        huggingface_hub_warnings = [x for x in self.selected_warnings if "huggingface_hub" in x]
        text = f"There are {len(self.selected_warnings)} warnings being selected."
        text += f"\n{len(huggingface_hub_warnings)} of them are from `huggingface_hub`."

        return {
            "type": "section",
            "text": {
                "type": "plain_text",
                "text": text,
                "emoji": True,
            },
            "accessory": {
                "type": "button",
                "text": {"type": "plain_text", "text": button_text, "emoji": True},
                "url": job_link,
            },
        }

    @staticmethod
    def get_device_report(report, rjust=6):
        if "single" in report and "multi" in report:
            return f"{str(report['single']).rjust(rjust)} | {str(report['multi']).rjust(rjust)} | "
        elif "single" in report:
            return f"{str(report['single']).rjust(rjust)} | {'0'.rjust(rjust)} | "
        elif "multi" in report:
            return f"{'0'.rjust(rjust)} | {str(report['multi']).rjust(rjust)} | "

    @property
    def category_failures(self) -> Dict:
        if job_name != "run_models_gpu":
            category_failures_report = ""
            return {"type": "section", "text": {"type": "mrkdwn", "text": category_failures_report}}

        model_failures = [v["failed"] for v in self.model_results.values()]

        category_failures = {}

        for model_failure in model_failures:
            for key, value in model_failure.items():
                if key not in category_failures:
                    category_failures[key] = dict(value)
                else:
                    category_failures[key]["unclassified"] += value["unclassified"]
                    category_failures[key]["single"] += value["single"]
                    category_failures[key]["multi"] += value["multi"]

        individual_reports = []
        for key, value in category_failures.items():
            device_report = self.get_device_report(value)

            if sum(value.values()):
                if device_report:
                    individual_reports.append(f"{device_report}{key}")
                else:
                    individual_reports.append(key)

        header = "Single |  Multi | Category\n"
        category_failures_report = prepare_reports(
            title="The following categories had failures", header=header, reports=individual_reports
        )

        return {"type": "section", "text": {"type": "mrkdwn", "text": category_failures_report}}

    def compute_diff_for_failure_reports(self, curr_failure_report, prev_failure_report):  # noqa
        # Remove the leading and training parts that don't contain failure count information.
        model_failures = curr_failure_report.split("\n")[3:-2]
        prev_model_failures = prev_failure_report.split("\n")[3:-2]
        entries_changed = set(model_failures).difference(prev_model_failures)

        prev_map = {}
        for f in prev_model_failures:
            items = [x.strip() for x in f.split("| ")]
            prev_map[items[-1]] = [int(x) for x in items[:-1]]

        curr_map = {}
        for f in entries_changed:
            items = [x.strip() for x in f.split("| ")]
            curr_map[items[-1]] = [int(x) for x in items[:-1]]

        diff_map = {}
        for k, v in curr_map.items():
            if k not in prev_map:
                diff_map[k] = v
            else:
                diff = [x - y for x, y in zip(v, prev_map[k])]
                if max(diff) > 0:
                    diff_map[k] = diff

        entries_changed = []
        for model_name, diff_values in diff_map.items():
            diff = [str(x) for x in diff_values]
            diff = [f"+{x}" if (x != "0" and not x.startswith("-")) else x for x in diff]
            diff = [x.rjust(9) for x in diff]
            device_report = " | ".join(diff) + " | "
            report = f"{device_report}{model_name}"
            entries_changed.append(report)
        entries_changed = sorted(entries_changed, key=lambda s: s.split("| ")[-1])

        return entries_changed

    @property
    def model_failures(self) -> List[Dict]:
        # Obtain per-model failures
        def per_model_sum(model_category_dict):
            return dicts_to_sum(model_category_dict["failed"].values())

        failures = {}
        non_model_failures = {
            k: per_model_sum(v) for k, v in self.model_results.items() if sum(per_model_sum(v).values())
        }

        for k, v in self.model_results.items():
            # The keys in `model_results` may contain things like `models_vit` or `quantization_autoawq`
            # Remove the prefix to make the report cleaner.
            k = k.replace("models_", "").replace("quantization_", "")
            if k in NON_MODEL_TEST_MODULES:
                continue

            if sum(per_model_sum(v).values()):
                dict_failed = dict(v["failed"])

                # Model job has a special form for reporting
                if job_name == "run_models_gpu":
                    pytorch_specific_failures = dict_failed.pop("PyTorch")
                    tensorflow_specific_failures = dict_failed.pop("TensorFlow")
                    other_failures = dicts_to_sum(dict_failed.values())

                    failures[k] = {
                        "PyTorch": pytorch_specific_failures,
                        "TensorFlow": tensorflow_specific_failures,
                        "other": other_failures,
                    }

                else:
                    test_name = job_to_test_map[job_name]
                    specific_failures = dict_failed.pop(test_name)
                    failures[k] = {
                        test_name: specific_failures,
                    }

        model_reports = []
        other_module_reports = []

        for key, value in non_model_failures.items():
            key = key.replace("models_", "").replace("quantization_", "")

            if key in NON_MODEL_TEST_MODULES:
                device_report = self.get_device_report(value)

                if sum(value.values()):
                    if device_report:
                        report = f"{device_report}{key}"
                    else:
                        report = key

                    other_module_reports.append(report)

        for key, value in failures.items():
            # Model job has a special form for reporting
            if job_name == "run_models_gpu":
                device_report_values = [
                    value["PyTorch"]["single"],
                    value["PyTorch"]["multi"],
                    value["TensorFlow"]["single"],
                    value["TensorFlow"]["multi"],
                    sum(value["other"].values()),
                ]

            else:
                test_name = job_to_test_map[job_name]
                device_report_values = [
                    value[test_name]["single"],
                    value[test_name]["multi"],
                ]

            if sum(device_report_values):
                # This is related to `model_header` below
                rjust_width = 9 if job_name == "run_models_gpu" else 6
                device_report = " | ".join([str(x).rjust(rjust_width) for x in device_report_values]) + " | "
                report = f"{device_report}{key}"

                model_reports.append(report)

        # (Possibly truncated) reports for the current workflow run - to be sent to Slack channels
        if job_name == "run_models_gpu":
            model_header = "Single PT |  Multi PT | Single TF |  Multi TF |     Other | Category\n"
        else:
            model_header = "Single |  Multi | Category\n"

        # Used when calling `prepare_reports` below to prepare the `title` argument
        label = test_to_result_name[job_to_test_map[job_name]]

        sorted_model_reports = sorted(model_reports, key=lambda s: s.split("| ")[-1])
        model_failures_report = prepare_reports(
            title=f"These following {label} modules had failures", header=model_header, reports=sorted_model_reports
        )

        module_header = "Single |  Multi | Category\n"
        sorted_module_reports = sorted(other_module_reports, key=lambda s: s.split("| ")[-1])
        module_failures_report = prepare_reports(
            title=f"The following {label} modules had failures", header=module_header, reports=sorted_module_reports
        )

        # To be sent to Slack channels
        model_failure_sections = [{"type": "section", "text": {"type": "mrkdwn", "text": model_failures_report}}]
        model_failure_sections.append({"type": "section", "text": {"type": "mrkdwn", "text": module_failures_report}})

        # Save the complete (i.e. no truncation) failure tables (of the current workflow run)
        # (to be uploaded as artifacts)

        model_failures_report = prepare_reports(
            title=f"These following {label} modules had failures",
            header=model_header,
            reports=sorted_model_reports,
            to_truncate=False,
        )
        file_path = os.path.join(os.getcwd(), f"ci_results_{job_name}/model_failures_report.txt")
        with open(file_path, "w", encoding="UTF-8") as fp:
            fp.write(model_failures_report)

        module_failures_report = prepare_reports(
            title=f"The following {label} modules had failures",
            header=module_header,
            reports=sorted_module_reports,
            to_truncate=False,
        )
        file_path = os.path.join(os.getcwd(), f"ci_results_{job_name}/module_failures_report.txt")
        with open(file_path, "w", encoding="UTF-8") as fp:
            fp.write(module_failures_report)

        if self.prev_ci_artifacts is not None:
            # if the last run produces artifact named `ci_results_{job_name}`
            if (
                f"ci_results_{job_name}" in self.prev_ci_artifacts
                and "model_failures_report.txt" in self.prev_ci_artifacts[f"ci_results_{job_name}"]
            ):
                # Compute the difference of the previous/current (model failure) table
                prev_model_failures = self.prev_ci_artifacts[f"ci_results_{job_name}"]["model_failures_report.txt"]
                entries_changed = self.compute_diff_for_failure_reports(model_failures_report, prev_model_failures)
                if len(entries_changed) > 0:
                    # Save the complete difference
                    diff_report = prepare_reports(
                        title="Changed model modules failures",
                        header=model_header,
                        reports=entries_changed,
                        to_truncate=False,
                    )
                    file_path = os.path.join(os.getcwd(), f"ci_results_{job_name}/changed_model_failures_report.txt")
                    with open(file_path, "w", encoding="UTF-8") as fp:
                        fp.write(diff_report)

                    # To be sent to Slack channels
                    diff_report = prepare_reports(
                        title="*Changed model modules failures*",
                        header=model_header,
                        reports=entries_changed,
                    )
                    model_failure_sections.append(
                        {"type": "section", "text": {"type": "mrkdwn", "text": diff_report}},
                    )

        return model_failure_sections

    @property
    def additional_failures(self) -> Dict:
        failures = {k: v["failed"] for k, v in self.additional_results.items()}
        errors = {k: v["error"] for k, v in self.additional_results.items()}

        individual_reports = []
        for key, value in failures.items():
            device_report = self.get_device_report(value)

            if sum(value.values()) or errors[key]:
                report = f"{key}"
                if errors[key]:
                    report = f"[Errored out] {report}"
                if device_report:
                    report = f"{device_report}{report}"

                individual_reports.append(report)

        header = "Single |  Multi | Category\n"
        failures_report = prepare_reports(
            title="The following non-modeling tests had failures", header=header, reports=individual_reports
        )

        return {"type": "section", "text": {"type": "mrkdwn", "text": failures_report}}

    @property
    def payload(self) -> str:
        blocks = [self.header]

        if self.ci_title:
            blocks.append(self.ci_title_section)

        if self.n_model_failures > 0 or self.n_additional_failures > 0:
            blocks.append(self.failures)

        if self.n_model_failures > 0:
            block = self.category_failures
            if block["text"]["text"]:
                blocks.append(block)

            for block in self.model_failures:
                if block["text"]["text"]:
                    blocks.append(block)

        if self.n_additional_failures > 0:
            blocks.append(self.additional_failures)

        if self.n_model_failures == 0 and self.n_additional_failures == 0:
            blocks.append(self.no_failures)

        if len(self.selected_warnings) > 0:
            blocks.append(self.warnings)

        new_failure_blocks = []
        for idx, (prev_workflow_run_id, prev_ci_artifacts) in enumerate(
            [self.prev_ci_artifacts] + self.other_ci_artifacts
        ):
            if idx == 0:
                # This is the truncated version to show on slack. For now.
                new_failure_blocks = self.get_new_model_failure_blocks(
                    prev_ci_artifacts=prev_ci_artifacts, with_header=False
                )

            # To save the list of new model failures and uploaed to hub repositories
            extra_blocks = self.get_new_model_failure_blocks(prev_ci_artifacts=prev_ci_artifacts, to_truncate=False)
            if extra_blocks:
                filename = "new_failures"
                if idx > 0:
                    filename = f"{filename}_against_{prev_workflow_run_id}"

                failure_text = extra_blocks[-1]["text"]["text"]
                file_path = os.path.join(os.getcwd(), f"ci_results_{job_name}/{filename}.txt")
                with open(file_path, "w", encoding="UTF-8") as fp:
                    fp.write(failure_text)

                # upload results to Hub dataset
                file_path = os.path.join(os.getcwd(), f"ci_results_{job_name}/{filename}.txt")
                _ = api.upload_file(
                    path_or_fileobj=file_path,
                    path_in_repo=f"{report_repo_folder}/ci_results_{job_name}/{filename}.txt",
                    repo_id=report_repo_id,
                    repo_type="dataset",
                    token=os.environ.get("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN", None),
                )

                # extra processing to save to json format
                new_failed_tests = {}
                nb_new_failed_tests = 0
                for line in failure_text.split():
                    if "https://github.com/huggingface/transformers/actions/runs" in line:
                        pattern = r"<(https://github.com/huggingface/transformers/actions/runs/.+?/job/.+?)\|(.+?)>"
                        items = re.findall(pattern, line)
                    elif "tests/" in line:
                        # TODO: Improve the condition here.
                        if "tests/models/" in line or (
                            "tests/quantization/" in line and job_name == "run_quantization_torch_gpu"
                        ):
                            model = line.split("/")[2]
                        else:
                            model = line.split("/")[1]
                        if model not in new_failed_tests:
                            new_failed_tests[model] = {"single-gpu": [], "multi-gpu": []}
                        for _, device in items:
                            new_failed_tests[model][f"{device}-gpu"].append(line)
                            nb_new_failed_tests += 1
                file_path = os.path.join(os.getcwd(), f"ci_results_{job_name}/{filename}.json")
                with open(file_path, "w", encoding="UTF-8") as fp:
                    json.dump(new_failed_tests, fp, ensure_ascii=False, indent=4)

                # upload results to Hub dataset
                file_path = os.path.join(os.getcwd(), f"ci_results_{job_name}/{filename}.json")
                commit_info = api.upload_file(
                    path_or_fileobj=file_path,
                    path_in_repo=f"{report_repo_folder}/ci_results_{job_name}/{filename}.json",
                    repo_id=report_repo_id,
                    repo_type="dataset",
                    token=os.environ.get("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN", None),
                )
                new_failures_url = f"https://huggingface.co/datasets/{report_repo_id}/raw/{commit_info.oid}/{report_repo_folder}/ci_results_{job_name}/{filename}.json"

                if idx == 0:
                    block = {
                        "type": "section",
                        "text": {
                            "type": "mrkdwn",
                            "text": f"*There are {nb_new_failed_tests} new failed tests*\n\n(compared to previous run: <https://github.com/huggingface/transformers/actions/runs/{prev_workflow_run_id}|{prev_workflow_run_id}>)",
                        },
                        "accessory": {
                            "type": "button",
                            "text": {"type": "plain_text", "text": "Check new failures"},
                            "url": new_failures_url,
                        },
                    }
                    blocks.append(block)
                else:
                    block = {
                        "type": "section",
                        "text": {
                            "type": "mrkdwn",
                            # TODO: We should NOT assume it's always Nvidia CI, but it's the case at this moment.
                            "text": f"*There are {nb_new_failed_tests} failed tests unique to {'this run' if not is_amd_daily_ci_workflow else 'AMD'}*\n\n(compared to Nvidia CI: <https://github.com/huggingface/transformers/actions/runs/{prev_workflow_run_id}|{prev_workflow_run_id}>)",
                        },
                        "accessory": {
                            "type": "button",
                            "text": {"type": "plain_text", "text": "Check failures"},
                            "url": new_failures_url,
                        },
                    }
                    blocks.append(block)

        if len(new_failure_blocks) > 0:
            blocks.extend(new_failure_blocks)

        return json.dumps(blocks)

    @staticmethod
    def error_out(title, ci_title="", runner_not_available=False, runner_failed=False, setup_failed=False):
        blocks = []
        title_block = {"type": "header", "text": {"type": "plain_text", "text": title}}
        blocks.append(title_block)

        if ci_title:
            ci_title_block = {"type": "section", "text": {"type": "mrkdwn", "text": ci_title}}
            blocks.append(ci_title_block)

        offline_runners = []
        if runner_not_available:
            text = "💔 CI runners are not available! Tests are not run. 😭"
            result = os.environ.get("OFFLINE_RUNNERS")
            if result is not None:
                offline_runners = json.loads(result)
        elif runner_failed:
            text = "💔 CI runners have problems! Tests are not run. 😭"
        elif setup_failed:
            text = "💔 Setup job failed. Tests are not run. 😭"
        else:
            text = "💔 There was an issue running the tests. 😭"

        error_block_1 = {
            "type": "header",
            "text": {
                "type": "plain_text",
                "text": text,
            },
        }

        text = ""
        if len(offline_runners) > 0:
            text = "\n  • " + "\n  • ".join(offline_runners)
            text = f"The following runners are offline:\n{text}\n\n"
        text += "🙏 Let's fix it ASAP! 🙏"

        error_block_2 = {
            "type": "section",
            "text": {
                "type": "plain_text",
                "text": text,
            },
            "accessory": {
                "type": "button",
                "text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
                "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}",
            },
        }
        blocks.extend([error_block_1, error_block_2])

        payload = json.dumps(blocks)

        print("Sending the following payload")
        print(json.dumps({"blocks": blocks}))

        client.chat_postMessage(
            channel=SLACK_REPORT_CHANNEL_ID,
            text=text,
            blocks=payload,
        )

    def post(self):
        payload = self.payload
        print("Sending the following payload")
        print(json.dumps({"blocks": json.loads(payload)}))

        text = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else "All tests passed."

        self.thread_ts = client.chat_postMessage(
            channel=SLACK_REPORT_CHANNEL_ID,
            blocks=payload,
            text=text,
        )

    def get_reply_blocks(self, job_name, job_result, failures, device, text):
        """
        failures: A list with elements of the form {"line": full test name, "trace": error trace}
        """
        # `text` must be less than 3001 characters in Slack SDK
        # keep some room for adding "[Truncated]" when necessary
        MAX_ERROR_TEXT = 3000 - len("[Truncated]")

        failure_text = ""
        for idx, error in enumerate(failures):
            new_text = failure_text + f"*{error['line']}*\n_{error['trace']}_\n\n"
            if len(new_text) > MAX_ERROR_TEXT:
                # `failure_text` here has length <= 3000
                failure_text = failure_text + "[Truncated]"
                break
            # `failure_text` here has length <= MAX_ERROR_TEXT
            failure_text = new_text

        title = job_name
        if device is not None:
            title += f" ({device}-gpu)"

        content = {"type": "section", "text": {"type": "mrkdwn", "text": text}}

        # TODO: Make sure we always have a valid job link (or at least a way not to break the report sending)
        # Currently we get the device from a job's artifact name.
        # If a device is found, the job name should contain the device type, for example, `XXX (single-gpu)`.
        # This could be done by adding `machine_type` in a job's `strategy`.
        # (If `job_result["job_link"][device]` is `None`, we get an error: `... [ERROR] must provide a string ...`)
        if job_result["job_link"] is not None and job_result["job_link"][device] is not None:
            content["accessory"] = {
                "type": "button",
                "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
                "url": job_result["job_link"][device],
            }

        return [
            {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
            content,
            {"type": "section", "text": {"type": "mrkdwn", "text": failure_text}},
        ]

    def get_new_model_failure_blocks(self, prev_ci_artifacts, with_header=True, to_truncate=True):
        if prev_ci_artifacts is None:
            return []

        if len(self.model_results) > 0:
            target_results = self.model_results
        else:
            target_results = self.additional_results[job_to_test_map[job_name]]

        # Make the format uniform between `model_results` and `additional_results[XXX]`
        if "failures" in target_results:
            target_results = {job_name: target_results}
        sorted_dict = sorted(target_results.items(), key=lambda t: t[0])

        job = job_to_test_map[job_name]
        prev_model_results = {}
        if (
            f"ci_results_{job_name}" in prev_ci_artifacts
            and f"{test_to_result_name[job]}_results.json" in prev_ci_artifacts[f"ci_results_{job_name}"]
        ):
            prev_model_results = json.loads(
                prev_ci_artifacts[f"ci_results_{job_name}"][f"{test_to_result_name[job]}_results.json"]
            )
            # Make the format uniform between `model_results` and `additional_results[XXX]`
            if "failures" in prev_model_results:
                prev_model_results = {job_name: prev_model_results}

        all_failure_lines = {}
        for job, job_result in sorted_dict:
            if len(job_result["failures"]):
                devices = sorted(job_result["failures"].keys(), reverse=True)
                for device in devices:
                    failures = job_result["failures"][device]
                    prev_error_lines = {}
                    if job in prev_model_results and device in prev_model_results[job]["failures"]:
                        prev_error_lines = {error["line"] for error in prev_model_results[job]["failures"][device]}

                    url = None
                    if job_result["job_link"] is not None and job_result["job_link"][device] is not None:
                        url = job_result["job_link"][device]

                    for idx, error in enumerate(failures):
                        if error["line"] in prev_error_lines:
                            continue

                        new_text = f"{error['line']}\n\n"

                        if new_text not in all_failure_lines:
                            all_failure_lines[new_text] = []

                        all_failure_lines[new_text].append(f"<{url}|{device}>" if url is not None else device)

        MAX_ERROR_TEXT = 3000 - len("[Truncated]") - len("```New failures```\n\n")
        if not to_truncate:
            MAX_ERROR_TEXT = float("inf")
        failure_text = ""
        for line, devices in all_failure_lines.items():
            new_text = failure_text + f"{'|'.join(devices)} gpu\n{line}"
            if len(new_text) > MAX_ERROR_TEXT:
                # `failure_text` here has length <= 3000
                failure_text = failure_text + "[Truncated]"
                break
            # `failure_text` here has length <= MAX_ERROR_TEXT
            failure_text = new_text

        blocks = []
        if failure_text:
            if with_header:
                blocks.append(
                    {"type": "header", "text": {"type": "plain_text", "text": "New failures", "emoji": True}}
                )
            else:
                failure_text = f"{failure_text}"
            blocks.append({"type": "section", "text": {"type": "mrkdwn", "text": failure_text}})

        return blocks

    def post_reply(self):
        if self.thread_ts is None:
            raise ValueError("Can only post reply if a post has been made.")

        sorted_dict = sorted(self.model_results.items(), key=lambda t: t[0])
        for job, job_result in sorted_dict:
            if len(job_result["failures"]):
                for device, failures in job_result["failures"].items():
                    text = "\n".join(
                        sorted([f"*{k}*: {v[device]}" for k, v in job_result["failed"].items() if v[device]])
                    )

                    blocks = self.get_reply_blocks(job, job_result, failures, device, text=text)

                    print("Sending the following reply")
                    print(json.dumps({"blocks": blocks}))

                    client.chat_postMessage(
                        channel=SLACK_REPORT_CHANNEL_ID,
                        text=f"Results for {job}",
                        blocks=blocks,
                        thread_ts=self.thread_ts["ts"],
                    )

                    time.sleep(1)

        for job, job_result in self.additional_results.items():
            if len(job_result["failures"]):
                for device, failures in job_result["failures"].items():
                    blocks = self.get_reply_blocks(
                        job,
                        job_result,
                        failures,
                        device,
                        text=f"Number of failures: {job_result['failed'][device]}",
                    )

                    print("Sending the following reply")
                    print(json.dumps({"blocks": blocks}))

                    client.chat_postMessage(
                        channel=SLACK_REPORT_CHANNEL_ID,
                        text=f"Results for {job}",
                        blocks=blocks,
                        thread_ts=self.thread_ts["ts"],
                    )

                    time.sleep(1)


def retrieve_artifact(artifact_path: str, gpu: Optional[str]):
    if gpu not in [None, "single", "multi"]:
        raise ValueError(f"Invalid GPU for artifact. Passed GPU: `{gpu}`.")

    _artifact = {}

    if os.path.exists(artifact_path):
        files = os.listdir(artifact_path)
        for file in files:
            try:
                with open(os.path.join(artifact_path, file)) as f:
                    _artifact[file.split(".")[0]] = f.read()
            except UnicodeDecodeError as e:
                raise ValueError(f"Could not open {os.path.join(artifact_path, file)}.") from e

    return _artifact


def retrieve_available_artifacts():
    class Artifact:
        def __init__(self, name: str, single_gpu: bool = False, multi_gpu: bool = False):
            self.name = name
            self.single_gpu = single_gpu
            self.multi_gpu = multi_gpu
            self.paths = []

        def __str__(self):
            return self.name

        def add_path(self, path: str, gpu: Optional[str] = None):
            self.paths.append({"name": self.name, "path": path, "gpu": gpu})

    _available_artifacts: Dict[str, Artifact] = {}

    directories = filter(os.path.isdir, os.listdir())
    for directory in directories:
        artifact_name = directory

        name_parts = artifact_name.split("_postfix_")
        if len(name_parts) > 1:
            artifact_name = name_parts[0]

        if artifact_name.startswith("single-gpu"):
            artifact_name = artifact_name[len("single-gpu") + 1 :]

            if artifact_name in _available_artifacts:
                _available_artifacts[artifact_name].single_gpu = True
            else:
                _available_artifacts[artifact_name] = Artifact(artifact_name, single_gpu=True)

            _available_artifacts[artifact_name].add_path(directory, gpu="single")

        elif artifact_name.startswith("multi-gpu"):
            artifact_name = artifact_name[len("multi-gpu") + 1 :]

            if artifact_name in _available_artifacts:
                _available_artifacts[artifact_name].multi_gpu = True
            else:
                _available_artifacts[artifact_name] = Artifact(artifact_name, multi_gpu=True)

            _available_artifacts[artifact_name].add_path(directory, gpu="multi")
        else:
            if artifact_name not in _available_artifacts:
                _available_artifacts[artifact_name] = Artifact(artifact_name)

            _available_artifacts[artifact_name].add_path(directory)

    return _available_artifacts


def prepare_reports(title, header, reports, to_truncate=True):
    report = ""

    MAX_ERROR_TEXT = 3000 - len("[Truncated]")
    if not to_truncate:
        MAX_ERROR_TEXT = float("inf")

    if len(reports) > 0:
        # `text` must be less than 3001 characters in Slack SDK
        # keep some room for adding "[Truncated]" when necessary

        for idx in range(len(reports)):
            _report = header + "\n".join(reports[: idx + 1])
            new_report = f"{title}:\n```\n{_report}\n```\n"
            if len(new_report) > MAX_ERROR_TEXT:
                # `report` here has length <= 3000
                report = report + "[Truncated]"
                break
            report = new_report

    return report


def pop_default(l: list[Any], i: int, default: Any) -> Any:
    try:
        return l.pop(i)
    except IndexError:
        return default


if __name__ == "__main__":
    api = HfApi()
    client = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"])

    SLACK_REPORT_CHANNEL_ID = os.environ["SLACK_REPORT_CHANNEL"]

    # runner_status = os.environ.get("RUNNER_STATUS")
    # runner_env_status = os.environ.get("RUNNER_ENV_STATUS")
    setup_status = os.environ.get("SETUP_STATUS")

    # runner_not_available = True if runner_status is not None and runner_status != "success" else False
    # runner_failed = True if runner_env_status is not None and runner_env_status != "success" else False
    # Let's keep the lines regardig runners' status (we might be able to use them again in the future)
    runner_not_available = False
    runner_failed = False
    # Some jobs don't depend (`needs`) on the job `setup`: in this case, the status of the job `setup` is `skipped`.
    setup_failed = False if setup_status in ["skipped", "success"] else True

    org = "huggingface"
    repo = "transformers"
    repository_full_name = f"{org}/{repo}"

    # This env. variable is set in workflow file (under the job `send_results`).
    ci_event = os.environ["CI_EVENT"]

    # To find the PR number in a commit title, for example, `Add AwesomeFormer model (#99999)`
    pr_number_re = re.compile(r"\(#(\d+)\)$")

    # Add Commit/PR title with a link for push CI
    # (check the title in 2 env. variables - depending on the CI is triggered via `push` or `workflow_run` event)
    ci_title_push = os.environ.get("CI_TITLE_PUSH")
    ci_title_workflow_run = os.environ.get("CI_TITLE_WORKFLOW_RUN")
    ci_title = ci_title_push if ci_title_push else ci_title_workflow_run

    ci_sha = os.environ.get("CI_SHA")

    ci_url = None
    if ci_sha:
        ci_url = f"https://github.com/{repository_full_name}/commit/{ci_sha}"

    if ci_title is not None:
        if ci_url is None:
            raise ValueError(
                "When a title is found (`ci_title`), it means a `push` event or a `workflow_run` even (triggered by "
                "another `push` event), and the commit SHA has to be provided in order to create the URL to the "
                "commit page."
            )
        ci_title = ci_title.strip().split("\n")[0].strip()

        # Retrieve the PR title and author login to complete the report
        commit_number = ci_url.split("/")[-1]
        ci_detail_url = f"https://api.github.com/repos/{repository_full_name}/commits/{commit_number}"
        ci_details = requests.get(ci_detail_url).json()
        ci_author = ci_details["author"]["login"]

        merged_by = None
        # Find the PR number (if any) and change the url to the actual PR page.
        numbers = pr_number_re.findall(ci_title)
        if len(numbers) > 0:
            pr_number = numbers[0]
            ci_detail_url = f"https://api.github.com/repos/{repository_full_name}/pulls/{pr_number}"
            ci_details = requests.get(ci_detail_url).json()

            ci_author = ci_details["user"]["login"]
            ci_url = f"https://github.com/{repository_full_name}/pull/{pr_number}"

            merged_by = ci_details["merged_by"]["login"]

        if merged_by is None:
            ci_title = f"<{ci_url}|{ci_title}>\nAuthor: {ci_author}"
        else:
            ci_title = f"<{ci_url}|{ci_title}>\nAuthor: {ci_author} | Merged by: {merged_by}"

    elif ci_sha:
        ci_title = f"<{ci_url}|commit: {ci_sha}>"

    else:
        ci_title = ""

    # `title` will be updated at the end before calling `Message()`.
    title = f"🤗 Results of {ci_event}"
    if runner_not_available or runner_failed or setup_failed:
        Message.error_out(title, ci_title, runner_not_available, runner_failed, setup_failed)
        exit(0)

    # sys.argv[0] is always `utils/notification_service.py`.
    arguments = sys.argv[1:]
    # In our usage in `.github/workflows/slack-report.yml`, we always pass an argument when calling this script.
    # The argument could be an empty string `""` if a job doesn't depend on the job `setup`.
    if arguments[0] == "":
        job_matrix = []
    else:
        job_matrix_as_str = arguments[0]
        try:
            folder_slices = ast.literal_eval(job_matrix_as_str)
            if len(folder_slices) > 0:
                if isinstance(folder_slices[0], list):
                    # Need to change from elements like `models/bert` to `models_bert` (the ones used as artifact names).
                    job_matrix = [
                        x.replace("models/", "models_").replace("quantization/", "quantization_")
                        for folders in folder_slices
                        for x in folders
                    ]
                elif isinstance(folder_slices[0], str):
                    job_matrix = [
                        x.replace("models/", "models_").replace("quantization/", "quantization_")
                        for x in folder_slices
                    ]
        except Exception:
            Message.error_out(title, ci_title)
            raise ValueError("Errored out.")

    github_actions_jobs = get_jobs(
        workflow_run_id=os.environ["GITHUB_RUN_ID"], token=os.environ["ACCESS_REPO_INFO_TOKEN"]
    )
    github_actions_job_links = {job["name"]: job["html_url"] for job in github_actions_jobs}

    artifact_name_to_job_map = {}
    for job in github_actions_jobs:
        for step in job["steps"]:
            if step["name"].startswith("Test suite reports artifacts: "):
                artifact_name = step["name"][len("Test suite reports artifacts: ") :]
                artifact_name_to_job_map[artifact_name] = job
                break

    available_artifacts = retrieve_available_artifacts()

    test_categories = [
        "PyTorch",
        "TensorFlow",
        "Flax",
        "Tokenizers",
        "Pipelines",
        "Trainer",
        "ONNX",
        "Auto",
        "Quantization",
        "Unclassified",
    ]

    job_name = os.getenv("CI_TEST_JOB")
    report_name_prefix = job_name

    # This dict will contain all the information relative to each model:
    # - Failures: the total, as well as the number of failures per-category defined above
    # - Success: total
    # - Time spent: as a comma-separated list of elapsed time
    # - Failures: as a line-break separated list of errors
    matrix_job_results = {
        matrix_name: {
            "failed": {m: {"unclassified": 0, "single": 0, "multi": 0} for m in test_categories},
            "success": 0,
            "time_spent": "",
            "failures": {},
            "job_link": {},
        }
        for matrix_name in job_matrix
        if f"{report_name_prefix}_{matrix_name}_test_reports" in available_artifacts
    }

    unclassified_model_failures = []

    for matrix_name in matrix_job_results.keys():
        for artifact_path_dict in available_artifacts[f"{report_name_prefix}_{matrix_name}_test_reports"].paths:
            path = artifact_path_dict["path"]
            artifact_gpu = artifact_path_dict["gpu"]

            if path not in artifact_name_to_job_map:
                # Mismatch between available artifacts and reported jobs on github. It happens.
                continue

            artifact = retrieve_artifact(path, artifact_gpu)
            if "stats" in artifact:
                # Link to the GitHub Action job
                job = artifact_name_to_job_map[path]
                matrix_job_results[matrix_name]["job_link"][artifact_gpu] = job["html_url"]
                failed, success, time_spent = handle_test_results(artifact["stats"])
                matrix_job_results[matrix_name]["success"] += success
                matrix_job_results[matrix_name]["time_spent"] += time_spent[1:-1] + ", "

                stacktraces = handle_stacktraces(artifact["failures_line"])

                # TODO: ???
                for line in artifact["summary_short"].split("\n"):
                    if line.startswith("FAILED "):
                        # Avoid the extra `FAILED` entry given by `run_test_using_subprocess` causing issue when calling
                        # `stacktraces.pop` below.
                        # See `run_test_using_subprocess` in `src/transformers/testing_utils.py`
                        if " - Failed: (subprocess)" in line:
                            continue
                        line = line[len("FAILED ") :]
                        line = line.split()[0].replace("\n", "")

                        if artifact_gpu not in matrix_job_results[matrix_name]["failures"]:
                            matrix_job_results[matrix_name]["failures"][artifact_gpu] = []

                        trace = pop_default(stacktraces, 0, "Cannot retrieve error message.")
                        matrix_job_results[matrix_name]["failures"][artifact_gpu].append(
                            {"line": line, "trace": trace}
                        )

                        # TODO: How to deal wit this

                        if re.search("tests/quantization", line):
                            matrix_job_results[matrix_name]["failed"]["Quantization"][artifact_gpu] += 1

                        elif re.search("test_modeling_tf_", line):
                            matrix_job_results[matrix_name]["failed"]["TensorFlow"][artifact_gpu] += 1

                        elif re.search("test_modeling_flax_", line):
                            matrix_job_results[matrix_name]["failed"]["Flax"][artifact_gpu] += 1

                        elif re.search("test_modeling", line):
                            matrix_job_results[matrix_name]["failed"]["PyTorch"][artifact_gpu] += 1

                        elif re.search("test_tokenization", line):
                            matrix_job_results[matrix_name]["failed"]["Tokenizers"][artifact_gpu] += 1

                        elif re.search("test_pipelines", line):
                            matrix_job_results[matrix_name]["failed"]["Pipelines"][artifact_gpu] += 1

                        elif re.search("test_trainer", line):
                            matrix_job_results[matrix_name]["failed"]["Trainer"][artifact_gpu] += 1

                        elif re.search("onnx", line):
                            matrix_job_results[matrix_name]["failed"]["ONNX"][artifact_gpu] += 1

                        elif re.search("auto", line):
                            matrix_job_results[matrix_name]["failed"]["Auto"][artifact_gpu] += 1

                        else:
                            matrix_job_results[matrix_name]["failed"]["Unclassified"][artifact_gpu] += 1
                            unclassified_model_failures.append(line)

    # Additional runs
    additional_files = {
        "PyTorch pipelines": "run_pipelines_torch_gpu_test_reports",
        "TensorFlow pipelines": "run_pipelines_tf_gpu_test_reports",
        "Examples directory": "run_examples_gpu_test_reports",
        "DeepSpeed": "run_torch_cuda_extensions_gpu_test_reports",
    }

    if ci_event in ["push", "Nightly CI"] or ci_event.startswith("Past CI"):
        del additional_files["Examples directory"]
        del additional_files["PyTorch pipelines"]
        del additional_files["TensorFlow pipelines"]
    elif ci_event.startswith("Scheduled CI (AMD)"):
        del additional_files["TensorFlow pipelines"]
        del additional_files["DeepSpeed"]
    elif ci_event.startswith("Push CI (AMD)"):
        additional_files = {}

    report_repo_id = os.getenv("REPORT_REPO_ID")

    # if it is not a scheduled run, upload the reports to a subfolder under `report_repo_folder`
    report_repo_subfolder = ""
    if os.getenv("GITHUB_EVENT_NAME") != "schedule":
        report_repo_subfolder = f"{os.getenv('GITHUB_RUN_NUMBER')}-{os.getenv('GITHUB_RUN_ID')}"
        report_repo_subfolder = f"runs/{report_repo_subfolder}"

    workflow_run = get_last_daily_ci_run(
        token=os.environ["ACCESS_REPO_INFO_TOKEN"], workflow_run_id=os.getenv("GITHUB_RUN_ID")
    )
    workflow_run_created_time = workflow_run["created_at"]
    workflow_id = workflow_run["workflow_id"]

    report_repo_folder = workflow_run_created_time.split("T")[0]

    if report_repo_subfolder:
        report_repo_folder = f"{report_repo_folder}/{report_repo_subfolder}"

    # Remove some entries in `additional_files` if they are not concerned.
    test_name = None
    if job_name in job_to_test_map:
        test_name = job_to_test_map[job_name]
    additional_files = {k: v for k, v in additional_files.items() if k == test_name}

    additional_results = {
        key: {
            "failed": {"unclassified": 0, "single": 0, "multi": 0},
            "success": 0,
            "time_spent": "",
            "error": False,
            "failures": {},
            "job_link": {},
        }
        for key in additional_files.keys()
    }

    for key in additional_results.keys():
        # If a whole suite of test fails, the artifact isn't available.
        if additional_files[key] not in available_artifacts:
            additional_results[key]["error"] = True
            continue

        for artifact_path_dict in available_artifacts[additional_files[key]].paths:
            path = artifact_path_dict["path"]
            artifact_gpu = artifact_path_dict["gpu"]

            # Link to the GitHub Action job
            job = artifact_name_to_job_map[path]
            additional_results[key]["job_link"][artifact_gpu] = job["html_url"]

            artifact = retrieve_artifact(path, artifact_gpu)
            stacktraces = handle_stacktraces(artifact["failures_line"])

            failed, success, time_spent = handle_test_results(artifact["stats"])
            additional_results[key]["failed"][artifact_gpu or "unclassified"] += failed
            additional_results[key]["success"] += success
            additional_results[key]["time_spent"] += time_spent[1:-1] + ", "

            if len(artifact["errors"]):
                additional_results[key]["error"] = True

            if failed:
                for line in artifact["summary_short"].split("\n"):
                    if line.startswith("FAILED "):
                        # Avoid the extra `FAILED` entry given by `run_test_using_subprocess` causing issue when calling
                        # `stacktraces.pop` below.
                        # See `run_test_using_subprocess` in `src/transformers/testing_utils.py`
                        if " - Failed: (subprocess)" in line:
                            continue
                        line = line[len("FAILED ") :]
                        line = line.split()[0].replace("\n", "")

                        if artifact_gpu not in additional_results[key]["failures"]:
                            additional_results[key]["failures"][artifact_gpu] = []

                        trace = pop_default(stacktraces, 0, "Cannot retrieve error message.")
                        additional_results[key]["failures"][artifact_gpu].append({"line": line, "trace": trace})

    # Let's only check the warning for the model testing job. Currently, the job `run_extract_warnings` is only run
    # when `inputs.job` (in the workflow file) is `run_models_gpu`. The reason is: otherwise we need to save several
    # artifacts with different names which complicates the logic for an insignificant part of the CI workflow reporting.
    selected_warnings = []
    if job_name == "run_models_gpu":
        if "warnings_in_ci" in available_artifacts:
            directory = available_artifacts["warnings_in_ci"].paths[0]["path"]
            with open(os.path.join(directory, "selected_warnings.json")) as fp:
                selected_warnings = json.load(fp)

    if not os.path.isdir(os.path.join(os.getcwd(), f"ci_results_{job_name}")):
        os.makedirs(os.path.join(os.getcwd(), f"ci_results_{job_name}"))

    nvidia_daily_ci_workflow = "huggingface/transformers/.github/workflows/self-scheduled-caller.yml"
    amd_daily_ci_workflows = (
        "huggingface/transformers/.github/workflows/self-scheduled-amd-mi250-caller.yml",
        "huggingface/transformers/.github/workflows/self-scheduled-amd-mi300-caller.yml",
    )
    is_nvidia_daily_ci_workflow = os.environ.get("GITHUB_WORKFLOW_REF").startswith(nvidia_daily_ci_workflow)
    is_amd_daily_ci_workflow = os.environ.get("GITHUB_WORKFLOW_REF").startswith(amd_daily_ci_workflows)

    is_scheduled_ci_run = os.environ.get("GITHUB_EVENT_NAME") == "schedule"
    # For AMD workflow runs: the different AMD CI callers (MI210/MI250/MI300, etc.) are triggered by `workflow_run`
    #  event of `.github/workflows/self-scheduled-amd-caller.yml`.
    if is_amd_daily_ci_workflow:
        # Get the path to the file on the runner that contains the full event webhook payload.
        event_payload_path = os.environ.get("GITHUB_EVENT_PATH")
        # Load the event payload
        with open(event_payload_path) as fp:
            event_payload = json.load(fp)
            # The event that triggers the `workflow_run` event.
            if "workflow_run" in event_payload:
                is_scheduled_ci_run = event_payload["workflow_run"]["event"] == "schedule"

    test_name_and_result_pairs = []
    if len(matrix_job_results) > 0:
        test_name = job_to_test_map[job_name]
        test_name_and_result_pairs.append((test_name, matrix_job_results))

    for test_name, result in additional_results.items():
        test_name_and_result_pairs.append((test_name, result))

    for test_name, result in test_name_and_result_pairs:
        with open(f"ci_results_{job_name}/{test_to_result_name[test_name]}_results.json", "w", encoding="UTF-8") as fp:
            json.dump(result, fp, indent=4, ensure_ascii=False)

        api.upload_file(
            path_or_fileobj=f"ci_results_{job_name}/{test_to_result_name[test_name]}_results.json",
            path_in_repo=f"{report_repo_folder}/ci_results_{job_name}/{test_to_result_name[test_name]}_results.json",
            repo_id=report_repo_id,
            repo_type="dataset",
            token=os.environ.get("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN", None),
        )

    # Let's create a file contain job --> job link
    if len(matrix_job_results) > 0:
        target_results = matrix_job_results
    else:
        target_results = additional_results[job_to_test_map[job_name]]

    # Make the format uniform between `model_results` and `additional_results[XXX]`
    if "failures" in target_results:
        target_results = {job_name: target_results}

    job_links = {}
    sorted_dict = sorted(target_results.items(), key=lambda t: t[0])
    for job, job_result in sorted_dict:
        if job.startswith("models_"):
            job = job[len("models_") :]
        elif job.startswith("quantization_"):
            job = job[len("quantization_") :]
        job_links[job] = job_result["job_link"]

    with open(f"ci_results_{job_name}/job_links.json", "w", encoding="UTF-8") as fp:
        json.dump(job_links, fp, indent=4, ensure_ascii=False)

    api.upload_file(
        path_or_fileobj=f"ci_results_{job_name}/job_links.json",
        path_in_repo=f"{report_repo_folder}/ci_results_{job_name}/job_links.json",
        repo_id=report_repo_id,
        repo_type="dataset",
        token=os.environ.get("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN", None),
    )

    prev_workflow_run_id = None
    other_workflow_run_ids = []

    if is_scheduled_ci_run:
        prev_workflow_run_id = get_last_daily_ci_workflow_run_id(
            token=os.environ["ACCESS_REPO_INFO_TOKEN"], workflow_id=workflow_id
        )
        # For a scheduled run that is not the Nvidia's scheduled daily CI, add Nvidia's scheduled daily CI run as a target to compare.
        if not is_nvidia_daily_ci_workflow:
            # The id of the workflow `.github/workflows/self-scheduled-caller.yml` (not of a workflow run of it).
            other_workflow_id = "90575235"
            # We need to get the Nvidia's scheduled daily CI run that match the current run (i.e. run with the same commit SHA)
            other_workflow_run_id = get_last_daily_ci_workflow_run_id(
                token=os.environ["ACCESS_REPO_INFO_TOKEN"], workflow_id=other_workflow_id, commit_sha=ci_sha
            )
            other_workflow_run_ids.append(other_workflow_run_id)
    else:
        prev_workflow_run_id = os.environ["PREV_WORKFLOW_RUN_ID"]
        other_workflow_run_id = os.environ["OTHER_WORKFLOW_RUN_ID"]
        other_workflow_run_ids.append(other_workflow_run_id)

    prev_ci_artifacts = (None, None)
    other_ci_artifacts = []

    for idx, target_workflow_run_id in enumerate([prev_workflow_run_id] + other_workflow_run_ids):
        if target_workflow_run_id is None or target_workflow_run_id == "":
            continue
        else:
            artifact_names = [f"ci_results_{job_name}"]
            output_dir = os.path.join(os.getcwd(), "previous_reports")
            os.makedirs(output_dir, exist_ok=True)
            ci_artifacts = get_last_daily_ci_reports(
                artifact_names=artifact_names,
                output_dir=output_dir,
                token=os.environ["ACCESS_REPO_INFO_TOKEN"],
                workflow_run_id=target_workflow_run_id,
            )
            if idx == 0:
                prev_ci_artifacts = (target_workflow_run_id, ci_artifacts)
            else:
                other_ci_artifacts.append((target_workflow_run_id, ci_artifacts))

    ci_name_in_report = ""
    if job_name in job_to_test_map:
        ci_name_in_report = job_to_test_map[job_name]

    title = f"🤗 Results of {ci_event}: {ci_name_in_report}"

    message = Message(
        title,
        ci_title,
        matrix_job_results,
        additional_results,
        selected_warnings=selected_warnings,
        prev_ci_artifacts=prev_ci_artifacts,
        other_ci_artifacts=other_ci_artifacts,
    )

    # send report only if there is any failure (for push CI)
    if message.n_failures or (ci_event != "push" and not ci_event.startswith("Push CI (AMD)")):
        message.post()
        message.post_reply()