File size: 8,228 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

from transformers import is_torch_available, is_vision_available
from transformers.processing_utils import _validate_images_text_input_order
from transformers.testing_utils import require_torch, require_vision


if is_vision_available():
    import PIL

if is_torch_available():
    import torch


@require_vision
class ProcessingUtilTester(unittest.TestCase):
    def test_validate_images_text_input_order(self):
        # text string and PIL images inputs
        images = PIL.Image.new("RGB", (224, 224))
        text = "text"
        # test correct text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
        self.assertEqual(valid_images, images)
        self.assertEqual(valid_text, text)
        # test incorrect text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
        self.assertEqual(valid_images, images)
        self.assertEqual(valid_text, text)

        # text list of string and numpy images inputs
        images = np.random.rand(224, 224, 3)
        text = ["text1", "text2"]
        # test correct text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
        self.assertTrue(np.array_equal(valid_images, images))
        self.assertEqual(valid_text, text)
        # test incorrect text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
        self.assertTrue(np.array_equal(valid_images, images))
        self.assertEqual(valid_text, text)

        # text nested list of string and list of pil images inputs
        images = [PIL.Image.new("RGB", (224, 224)), PIL.Image.new("RGB", (224, 224))]
        text = [["text1", "text2, text3"], ["text3", "text4"]]
        # test correct text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
        self.assertEqual(valid_images, images)
        self.assertEqual(valid_text, text)
        # test incorrect text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
        self.assertEqual(valid_images, images)
        self.assertEqual(valid_text, text)

        # list of strings and list of numpy images inputs
        images = [np.random.rand(224, 224, 3), np.random.rand(224, 224, 3)]
        text = ["text1", "text2"]
        # test correct text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
        self.assertTrue(np.array_equal(valid_images[0], images[0]))
        self.assertEqual(valid_text, text)
        # test incorrect text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
        self.assertTrue(np.array_equal(valid_images[0], images[0]))
        self.assertEqual(valid_text, text)

        # list of strings and list of url images inputs
        images = ["https://url1", "https://url2"]
        text = ["text1", "text2"]
        # test correct text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
        self.assertEqual(valid_images, images)
        self.assertEqual(valid_text, text)
        # test incorrect text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
        self.assertEqual(valid_images, images)
        self.assertEqual(valid_text, text)

        # list of strings and nested list of numpy images inputs
        images = [[np.random.rand(224, 224, 3), np.random.rand(224, 224, 3)], [np.random.rand(224, 224, 3)]]
        text = ["text1", "text2"]
        # test correct text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
        self.assertTrue(np.array_equal(valid_images[0][0], images[0][0]))
        self.assertEqual(valid_text, text)
        # test incorrect text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
        self.assertTrue(np.array_equal(valid_images[0][0], images[0][0]))
        self.assertEqual(valid_text, text)

        # nested list of strings and nested list of PIL images inputs
        images = [
            [PIL.Image.new("RGB", (224, 224)), PIL.Image.new("RGB", (224, 224))],
            [PIL.Image.new("RGB", (224, 224))],
        ]
        text = [["text1", "text2, text3"], ["text3", "text4"]]
        # test correct text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
        self.assertEqual(valid_images, images)
        self.assertEqual(valid_text, text)
        # test incorrect text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
        self.assertEqual(valid_images, images)
        self.assertEqual(valid_text, text)

        # None images
        images = None
        text = "text"
        # test correct text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
        self.assertEqual(images, None)
        self.assertEqual(text, text)
        # test incorrect text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
        self.assertEqual(images, None)
        self.assertEqual(text, text)

        # None text
        images = PIL.Image.new("RGB", (224, 224))
        text = None
        # test correct text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
        self.assertEqual(images, images)
        self.assertEqual(text, None)
        # test incorrect text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
        self.assertEqual(images, images)
        self.assertEqual(text, None)

        # incorrect inputs
        images = "text"
        text = "text"
        with self.assertRaises(ValueError):
            _validate_images_text_input_order(images=images, text=text)

    @require_torch
    def test_validate_images_text_input_order_torch(self):
        # text string and torch images inputs
        images = torch.rand(224, 224, 3)
        text = "text"
        # test correct text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
        self.assertTrue(torch.equal(valid_images, images))
        self.assertEqual(valid_text, text)
        # test incorrect text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
        self.assertTrue(torch.equal(valid_images, images))
        self.assertEqual(valid_text, text)

        # text list of string and list of torch images inputs
        images = [torch.rand(224, 224, 3), torch.rand(224, 224, 3)]
        text = ["text1", "text2"]
        # test correct text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=images, text=text)
        self.assertTrue(torch.equal(valid_images[0], images[0]))
        self.assertEqual(valid_text, text)
        # test incorrect text and images order
        valid_images, valid_text = _validate_images_text_input_order(images=text, text=images)
        self.assertTrue(torch.equal(valid_images[0], images[0]))
        self.assertEqual(valid_text, text)