File size: 11,997 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import numpy as np
from huggingface_hub import HfFolder, snapshot_download

from transformers import BertConfig, is_flax_available
from transformers.testing_utils import (
    TOKEN,
    CaptureLogger,
    TemporaryHubRepo,
    is_staging_test,
    require_flax,
    require_safetensors,
)
from transformers.utils import FLAX_WEIGHTS_NAME, SAFE_WEIGHTS_NAME, logging


if is_flax_available():
    import os

    from flax.core.frozen_dict import unfreeze
    from flax.traverse_util import flatten_dict

    from transformers import FlaxBertModel

    os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12"  # assumed parallelism: 8


@require_flax
@is_staging_test
class FlaxModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)

    def test_push_to_hub(self):
        with TemporaryHubRepo(token=self._token) as tmp_repo:
            config = BertConfig(
                vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
            )
            model = FlaxBertModel(config)
            model.push_to_hub(tmp_repo.repo_id, token=self._token)

            new_model = FlaxBertModel.from_pretrained(tmp_repo.repo_id)

            base_params = flatten_dict(unfreeze(model.params))
            new_params = flatten_dict(unfreeze(new_model.params))

            for key in base_params.keys():
                max_diff = (base_params[key] - new_params[key]).sum().item()
                self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_push_to_hub_via_save_pretrained(self):
        with TemporaryHubRepo(token=self._token) as tmp_repo:
            config = BertConfig(
                vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
            )
            model = FlaxBertModel(config)
            # Push to hub via save_pretrained
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token)

            new_model = FlaxBertModel.from_pretrained(tmp_repo.repo_id)

            base_params = flatten_dict(unfreeze(model.params))
            new_params = flatten_dict(unfreeze(new_model.params))

            for key in base_params.keys():
                max_diff = (base_params[key] - new_params[key]).sum().item()
                self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_push_to_hub_in_organization(self):
        with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo:
            config = BertConfig(
                vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
            )
            model = FlaxBertModel(config)
            model.push_to_hub(tmp_repo.repo_id, token=self._token)

            new_model = FlaxBertModel.from_pretrained(tmp_repo.repo_id)

            base_params = flatten_dict(unfreeze(model.params))
            new_params = flatten_dict(unfreeze(new_model.params))

            for key in base_params.keys():
                max_diff = (base_params[key] - new_params[key]).sum().item()
                self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_push_to_hub_in_organization_via_save_pretrained(self):
        with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo:
            config = BertConfig(
                vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
            )
            model = FlaxBertModel(config)
            # Push to hub via save_pretrained
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token)

            new_model = FlaxBertModel.from_pretrained(tmp_repo.repo_id)

            base_params = flatten_dict(unfreeze(model.params))
            new_params = flatten_dict(unfreeze(new_model.params))

            for key in base_params.keys():
                max_diff = (base_params[key] - new_params[key]).sum().item()
                self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")


def check_models_equal(model1, model2):
    models_are_equal = True
    flat_params_1 = flatten_dict(model1.params)
    flat_params_2 = flatten_dict(model2.params)
    for key in flat_params_1.keys():
        if np.sum(np.abs(flat_params_1[key] - flat_params_2[key])) > 1e-4:
            models_are_equal = False

    return models_are_equal


@require_flax
class FlaxModelUtilsTest(unittest.TestCase):
    def test_model_from_pretrained_subfolder(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
        model = FlaxBertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder))

            with self.assertRaises(OSError):
                _ = FlaxBertModel.from_pretrained(tmp_dir)

            model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_subfolder_sharded(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
        model = FlaxBertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")

            with self.assertRaises(OSError):
                _ = FlaxBertModel.from_pretrained(tmp_dir)

            model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_hub_subfolder(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-subfolder"

        with self.assertRaises(OSError):
            _ = FlaxBertModel.from_pretrained(model_id)

        model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

    def test_model_from_pretrained_hub_subfolder_sharded(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
        with self.assertRaises(OSError):
            _ = FlaxBertModel.from_pretrained(model_id)

        model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

    @require_safetensors
    def test_safetensors_save_and_load(self):
        model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True)

            # No msgpack file, only a model.safetensors
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, FLAX_WEIGHTS_NAME)))

            new_model = FlaxBertModel.from_pretrained(tmp_dir)

        self.assertTrue(check_models_equal(model, new_model))

    @require_safetensors
    def test_safetensors_load_from_hub(self):
        """
        This test checks that we can load safetensors from a checkpoint that only has those on the Hub
        """
        flax_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only")

        # Can load from the Flax-formatted checkpoint
        safetensors_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-safetensors-only")
        self.assertTrue(check_models_equal(flax_model, safetensors_model))

    @require_safetensors
    def test_safetensors_load_from_local(self):
        """
        This test checks that we can load safetensors from a checkpoint that only has those on the Hub
        """
        with tempfile.TemporaryDirectory() as tmp:
            location = snapshot_download("hf-internal-testing/tiny-bert-flax-only", cache_dir=tmp)
            flax_model = FlaxBertModel.from_pretrained(location)

        with tempfile.TemporaryDirectory() as tmp:
            location = snapshot_download("hf-internal-testing/tiny-bert-flax-safetensors-only", cache_dir=tmp)
            safetensors_model = FlaxBertModel.from_pretrained(location)

        self.assertTrue(check_models_equal(flax_model, safetensors_model))

    @require_safetensors
    def test_safetensors_load_from_hub_msgpack_before_safetensors(self):
        """
        This test checks that we'll first download msgpack weights before safetensors
        The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch
        """
        FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-msgpack")

    @require_safetensors
    def test_safetensors_load_from_local_msgpack_before_safetensors(self):
        """
        This test checks that we'll first download msgpack weights before safetensors
        The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch
        """
        with tempfile.TemporaryDirectory() as tmp:
            location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors-msgpack", cache_dir=tmp)
            FlaxBertModel.from_pretrained(location)

    @require_safetensors
    def test_safetensors_flax_from_flax(self):
        model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True)
            new_model = FlaxBertModel.from_pretrained(tmp_dir)

        self.assertTrue(check_models_equal(model, new_model))

    @require_safetensors
    def test_safetensors_flax_from_sharded_msgpack_with_sharded_safetensors_local(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            path = snapshot_download(
                "hf-internal-testing/tiny-bert-flax-safetensors-msgpack-sharded", cache_dir=tmp_dir
            )

            # This should not raise even if there are two types of sharded weights
            FlaxBertModel.from_pretrained(path)

    @require_safetensors
    def test_safetensors_flax_from_sharded_msgpack_with_sharded_safetensors_hub(self):
        # This should not raise even if there are two types of sharded weights
        # This should discard the safetensors weights in favor of the msgpack sharded weights
        FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-safetensors-msgpack-sharded")

    @require_safetensors
    def test_safetensors_from_pt_bf16(self):
        # This should not raise; should be able to load bf16-serialized torch safetensors without issue
        # and without torch.
        logger = logging.get_logger("transformers.modeling_flax_utils")

        with CaptureLogger(logger) as cl:
            FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-bf16")

        self.assertTrue(
            "Some of the weights of FlaxBertModel were initialized in bfloat16 precision from the model checkpoint"
            in cl.out
        )