File size: 8,300 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path

from huggingface_hub import HfFolder
from requests.exceptions import HTTPError

from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.image_processing_utils import get_size_dict
from transformers.testing_utils import TOKEN, TemporaryHubRepo, get_tests_dir, is_staging_test


sys.path.append(str(Path(__file__).parent.parent.parent / "utils"))

from test_module.custom_image_processing import CustomImageProcessor  # noqa E402


SAMPLE_IMAGE_PROCESSING_CONFIG_DIR = get_tests_dir("fixtures")


class ImageProcessorUtilTester(unittest.TestCase):
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        _ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
            _ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
            # This check we did call the fake head request
            mock_head.assert_called()

    def test_image_processor_from_pretrained_subfolder(self):
        with self.assertRaises(OSError):
            # config is in subfolder, the following should not work without specifying the subfolder
            _ = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants")

        config = AutoImageProcessor.from_pretrained(
            "hf-internal-testing/stable-diffusion-all-variants", subfolder="feature_extractor"
        )

        self.assertIsNotNone(config)


@is_staging_test
class ImageProcessorPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)

    def test_push_to_hub(self):
        with TemporaryHubRepo(token=self._token) as tmp_repo:
            image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
            image_processor.push_to_hub(tmp_repo.repo_id, token=self._token)

            new_image_processor = ViTImageProcessor.from_pretrained(tmp_repo.repo_id)
            for k, v in image_processor.__dict__.items():
                self.assertEqual(v, getattr(new_image_processor, k))

    def test_push_to_hub_via_save_pretrained(self):
        with TemporaryHubRepo(token=self._token) as tmp_repo:
            image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
            # Push to hub via save_pretrained
            with tempfile.TemporaryDirectory() as tmp_dir:
                image_processor.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token)

            new_image_processor = ViTImageProcessor.from_pretrained(tmp_repo.repo_id)
            for k, v in image_processor.__dict__.items():
                self.assertEqual(v, getattr(new_image_processor, k))

    def test_push_to_hub_in_organization(self):
        with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo:
            image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
            image_processor.push_to_hub(tmp_repo.repo_id, token=self._token)

            new_image_processor = ViTImageProcessor.from_pretrained(tmp_repo.repo_id)
            for k, v in image_processor.__dict__.items():
                self.assertEqual(v, getattr(new_image_processor, k))

    def test_push_to_hub_in_organization_via_save_pretrained(self):
        with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo:
            image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
            # Push to hub via save_pretrained
            with tempfile.TemporaryDirectory() as tmp_dir:
                image_processor.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token)

            new_image_processor = ViTImageProcessor.from_pretrained(tmp_repo.repo_id)
            for k, v in image_processor.__dict__.items():
                self.assertEqual(v, getattr(new_image_processor, k))

    def test_push_to_hub_dynamic_image_processor(self):
        with TemporaryHubRepo(token=self._token) as tmp_repo:
            CustomImageProcessor.register_for_auto_class()
            image_processor = CustomImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)

            image_processor.push_to_hub(tmp_repo.repo_id, token=self._token)

            # This has added the proper auto_map field to the config
            self.assertDictEqual(
                image_processor.auto_map,
                {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"},
            )

            new_image_processor = AutoImageProcessor.from_pretrained(tmp_repo.repo_id, trust_remote_code=True)
            # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
            self.assertEqual(new_image_processor.__class__.__name__, "CustomImageProcessor")


class ImageProcessingUtilsTester(unittest.TestCase):
    def test_get_size_dict(self):
        # Test a dict with the wrong keys raises an error
        inputs = {"wrong_key": 224}
        with self.assertRaises(ValueError):
            get_size_dict(inputs)

        inputs = {"height": 224}
        with self.assertRaises(ValueError):
            get_size_dict(inputs)

        inputs = {"width": 224, "shortest_edge": 224}
        with self.assertRaises(ValueError):
            get_size_dict(inputs)

        # Test a dict with the correct keys is returned as is
        inputs = {"height": 224, "width": 224}
        outputs = get_size_dict(inputs)
        self.assertEqual(outputs, inputs)

        inputs = {"shortest_edge": 224}
        outputs = get_size_dict(inputs)
        self.assertEqual(outputs, {"shortest_edge": 224})

        inputs = {"longest_edge": 224, "shortest_edge": 224}
        outputs = get_size_dict(inputs)
        self.assertEqual(outputs, {"longest_edge": 224, "shortest_edge": 224})

        # Test a single int value which  represents (size, size)
        outputs = get_size_dict(224)
        self.assertEqual(outputs, {"height": 224, "width": 224})

        # Test a single int value which represents the shortest edge
        outputs = get_size_dict(224, default_to_square=False)
        self.assertEqual(outputs, {"shortest_edge": 224})

        # Test a tuple of ints which represents (height, width)
        outputs = get_size_dict((150, 200))
        self.assertEqual(outputs, {"height": 150, "width": 200})

        # Test a tuple of ints which represents (width, height)
        outputs = get_size_dict((150, 200), height_width_order=False)
        self.assertEqual(outputs, {"height": 200, "width": 150})

        # Test an int representing the shortest edge and max_size which represents the longest edge
        outputs = get_size_dict(224, max_size=256, default_to_square=False)
        self.assertEqual(outputs, {"shortest_edge": 224, "longest_edge": 256})

        # Test int with default_to_square=True and max_size fails
        with self.assertRaises(ValueError):
            get_size_dict(224, max_size=256, default_to_square=True)