File size: 16,450 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import warnings

import numpy as np

from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
    can_return_tuple,
    expand_dims,
    filter_out_non_signature_kwargs,
    flatten_dict,
    is_flax_available,
    is_tf_available,
    is_torch_available,
    reshape,
    squeeze,
    to_py_obj,
    transpose,
)


if is_flax_available():
    import jax.numpy as jnp

if is_tf_available():
    import tensorflow as tf

if is_torch_available():
    import torch


class GenericTester(unittest.TestCase):
    def test_flatten_dict(self):
        input_dict = {
            "task_specific_params": {
                "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4},
                "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4},
                "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6},
            }
        }
        expected_dict = {
            "task_specific_params.summarization.length_penalty": 1.0,
            "task_specific_params.summarization.max_length": 128,
            "task_specific_params.summarization.min_length": 12,
            "task_specific_params.summarization.num_beams": 4,
            "task_specific_params.summarization_cnn.length_penalty": 2.0,
            "task_specific_params.summarization_cnn.max_length": 142,
            "task_specific_params.summarization_cnn.min_length": 56,
            "task_specific_params.summarization_cnn.num_beams": 4,
            "task_specific_params.summarization_xsum.length_penalty": 1.0,
            "task_specific_params.summarization_xsum.max_length": 62,
            "task_specific_params.summarization_xsum.min_length": 11,
            "task_specific_params.summarization_xsum.num_beams": 6,
        }

        self.assertEqual(flatten_dict(input_dict), expected_dict)

    def test_transpose_numpy(self):
        x = np.random.randn(3, 4)
        self.assertTrue(np.allclose(transpose(x), x.transpose()))

        x = np.random.randn(3, 4, 5)
        self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), x.transpose((1, 2, 0))))

    @require_torch
    def test_transpose_torch(self):
        x = np.random.randn(3, 4)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(transpose(x), transpose(t).numpy()))

        x = np.random.randn(3, 4, 5)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), transpose(t, axes=(1, 2, 0)).numpy()))

    @require_tf
    def test_transpose_tf(self):
        x = np.random.randn(3, 4)
        t = tf.constant(x)
        self.assertTrue(np.allclose(transpose(x), transpose(t).numpy()))

        x = np.random.randn(3, 4, 5)
        t = tf.constant(x)
        self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), transpose(t, axes=(1, 2, 0)).numpy()))

    @require_flax
    def test_transpose_flax(self):
        x = np.random.randn(3, 4)
        t = jnp.array(x)
        self.assertTrue(np.allclose(transpose(x), np.asarray(transpose(t))))

        x = np.random.randn(3, 4, 5)
        t = jnp.array(x)
        self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), np.asarray(transpose(t, axes=(1, 2, 0)))))

    def test_reshape_numpy(self):
        x = np.random.randn(3, 4)
        self.assertTrue(np.allclose(reshape(x, (4, 3)), np.reshape(x, (4, 3))))

        x = np.random.randn(3, 4, 5)
        self.assertTrue(np.allclose(reshape(x, (12, 5)), np.reshape(x, (12, 5))))

    @require_torch
    def test_reshape_torch(self):
        x = np.random.randn(3, 4)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(reshape(x, (4, 3)), reshape(t, (4, 3)).numpy()))

        x = np.random.randn(3, 4, 5)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(reshape(x, (12, 5)), reshape(t, (12, 5)).numpy()))

    @require_tf
    def test_reshape_tf(self):
        x = np.random.randn(3, 4)
        t = tf.constant(x)
        self.assertTrue(np.allclose(reshape(x, (4, 3)), reshape(t, (4, 3)).numpy()))

        x = np.random.randn(3, 4, 5)
        t = tf.constant(x)
        self.assertTrue(np.allclose(reshape(x, (12, 5)), reshape(t, (12, 5)).numpy()))

    @require_flax
    def test_reshape_flax(self):
        x = np.random.randn(3, 4)
        t = jnp.array(x)
        self.assertTrue(np.allclose(reshape(x, (4, 3)), np.asarray(reshape(t, (4, 3)))))

        x = np.random.randn(3, 4, 5)
        t = jnp.array(x)
        self.assertTrue(np.allclose(reshape(x, (12, 5)), np.asarray(reshape(t, (12, 5)))))

    def test_squeeze_numpy(self):
        x = np.random.randn(1, 3, 4)
        self.assertTrue(np.allclose(squeeze(x), np.squeeze(x)))

        x = np.random.randn(1, 4, 1, 5)
        self.assertTrue(np.allclose(squeeze(x, axis=2), np.squeeze(x, axis=2)))

    @require_torch
    def test_squeeze_torch(self):
        x = np.random.randn(1, 3, 4)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(squeeze(x), squeeze(t).numpy()))

        x = np.random.randn(1, 4, 1, 5)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(squeeze(x, axis=2), squeeze(t, axis=2).numpy()))

    @require_tf
    def test_squeeze_tf(self):
        x = np.random.randn(1, 3, 4)
        t = tf.constant(x)
        self.assertTrue(np.allclose(squeeze(x), squeeze(t).numpy()))

        x = np.random.randn(1, 4, 1, 5)
        t = tf.constant(x)
        self.assertTrue(np.allclose(squeeze(x, axis=2), squeeze(t, axis=2).numpy()))

    @require_flax
    def test_squeeze_flax(self):
        x = np.random.randn(1, 3, 4)
        t = jnp.array(x)
        self.assertTrue(np.allclose(squeeze(x), np.asarray(squeeze(t))))

        x = np.random.randn(1, 4, 1, 5)
        t = jnp.array(x)
        self.assertTrue(np.allclose(squeeze(x, axis=2), np.asarray(squeeze(t, axis=2))))

    def test_expand_dims_numpy(self):
        x = np.random.randn(3, 4)
        self.assertTrue(np.allclose(expand_dims(x, axis=1), np.expand_dims(x, axis=1)))

    @require_torch
    def test_expand_dims_torch(self):
        x = np.random.randn(3, 4)
        t = torch.tensor(x)
        self.assertTrue(np.allclose(expand_dims(x, axis=1), expand_dims(t, axis=1).numpy()))

    @require_tf
    def test_expand_dims_tf(self):
        x = np.random.randn(3, 4)
        t = tf.constant(x)
        self.assertTrue(np.allclose(expand_dims(x, axis=1), expand_dims(t, axis=1).numpy()))

    @require_flax
    def test_expand_dims_flax(self):
        x = np.random.randn(3, 4)
        t = jnp.array(x)
        self.assertTrue(np.allclose(expand_dims(x, axis=1), np.asarray(expand_dims(t, axis=1))))

    def test_to_py_obj_native(self):
        self.assertTrue(to_py_obj(1) == 1)
        self.assertTrue(to_py_obj([1, 2, 3]) == [1, 2, 3])
        self.assertTrue(to_py_obj([((1.0, 1.1), 1.2), (2, 3)]) == [[[1.0, 1.1], 1.2], [2, 3]])

    def test_to_py_obj_numpy(self):
        x1 = [[1, 2, 3], [4, 5, 6]]
        t1 = np.array(x1)
        self.assertTrue(to_py_obj(t1) == x1)

        x2 = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
        t2 = np.array(x2)
        self.assertTrue(to_py_obj(t2) == x2)

        self.assertTrue(to_py_obj([t1, t2]) == [x1, x2])

    @require_torch
    def test_to_py_obj_torch(self):
        x1 = [[1, 2, 3], [4, 5, 6]]
        t1 = torch.tensor(x1)
        self.assertTrue(to_py_obj(t1) == x1)

        x2 = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
        t2 = torch.tensor(x2)
        self.assertTrue(to_py_obj(t2) == x2)

        self.assertTrue(to_py_obj([t1, t2]) == [x1, x2])

    @require_tf
    def test_to_py_obj_tf(self):
        x1 = [[1, 2, 3], [4, 5, 6]]
        t1 = tf.constant(x1)
        self.assertTrue(to_py_obj(t1) == x1)

        x2 = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
        t2 = tf.constant(x2)
        self.assertTrue(to_py_obj(t2) == x2)

        self.assertTrue(to_py_obj([t1, t2]) == [x1, x2])

    @require_flax
    def test_to_py_obj_flax(self):
        x1 = [[1, 2, 3], [4, 5, 6]]
        t1 = jnp.array(x1)
        self.assertTrue(to_py_obj(t1) == x1)

        x2 = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
        t2 = jnp.array(x2)
        self.assertTrue(to_py_obj(t2) == x2)

        self.assertTrue(to_py_obj([t1, t2]) == [x1, x2])

    @require_torch
    @require_tf
    @require_flax
    def test_to_py_obj_mixed(self):
        x1 = [[1], [2]]
        t1 = np.array(x1)

        x2 = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
        t2 = torch.tensor(x2)

        x3 = [1, 2, 3]
        t3 = tf.constant(x3)

        x4 = [[[1.0, 2.0]]]
        t4 = jnp.array(x4)

        mixed = [(t1, t2), (t3, t4)]
        self.assertTrue(to_py_obj(mixed) == [[x1, x2], [x3, x4]])


class ValidationDecoratorTester(unittest.TestCase):
    def test_cases_no_warning(self):
        with warnings.catch_warnings(record=True) as raised_warnings:
            warnings.simplefilter("always")

            # basic test
            @filter_out_non_signature_kwargs()
            def func1(a):
                return a

            result = func1(1)
            self.assertEqual(result, 1)

            # include extra kwarg
            @filter_out_non_signature_kwargs(extra=["extra_arg"])
            def func2(a, **kwargs):
                return a, kwargs

            a, kwargs = func2(1)
            self.assertEqual(a, 1)
            self.assertEqual(kwargs, {})

            a, kwargs = func2(1, extra_arg=2)
            self.assertEqual(a, 1)
            self.assertEqual(kwargs, {"extra_arg": 2})

            # multiple extra kwargs
            @filter_out_non_signature_kwargs(extra=["extra_arg", "extra_arg2"])
            def func3(a, **kwargs):
                return a, kwargs

            a, kwargs = func3(2)
            self.assertEqual(a, 2)
            self.assertEqual(kwargs, {})

            a, kwargs = func3(3, extra_arg2=3)
            self.assertEqual(a, 3)
            self.assertEqual(kwargs, {"extra_arg2": 3})

            a, kwargs = func3(1, extra_arg=2, extra_arg2=3)
            self.assertEqual(a, 1)
            self.assertEqual(kwargs, {"extra_arg": 2, "extra_arg2": 3})

            # Check that no warnings were raised
            self.assertEqual(len(raised_warnings), 0, f"Warning raised: {[w.message for w in raised_warnings]}")

    def test_cases_with_warnings(self):
        @filter_out_non_signature_kwargs()
        def func1(a):
            return a

        with self.assertWarns(UserWarning):
            func1(1, extra_arg=2)

        @filter_out_non_signature_kwargs(extra=["extra_arg"])
        def func2(a, **kwargs):
            return kwargs

        with self.assertWarns(UserWarning):
            kwargs = func2(1, extra_arg=2, extra_arg2=3)
        self.assertEqual(kwargs, {"extra_arg": 2})

        @filter_out_non_signature_kwargs(extra=["extra_arg", "extra_arg2"])
        def func3(a, **kwargs):
            return kwargs

        with self.assertWarns(UserWarning):
            kwargs = func3(1, extra_arg=2, extra_arg2=3, extra_arg3=4)
        self.assertEqual(kwargs, {"extra_arg": 2, "extra_arg2": 3})


@require_torch
class CanReturnTupleDecoratorTester(unittest.TestCase):
    def _get_model(self, config, store_config=True, raise_in_forward=False):
        # Simple model class for testing can_return_tuple decorator.
        class SimpleTestModel(torch.nn.Module):
            def __init__(self, config):
                super().__init__()
                if store_config:
                    self.config = config

            @can_return_tuple
            def forward(self, x):
                if raise_in_forward:
                    raise ValueError("Test error")
                return BaseModelOutput(
                    last_hidden_state=x,
                    hidden_states=None,
                    attentions=None,
                )

        return SimpleTestModel(config)

    def test_decorator_eager(self):
        """Test that the can_return_tuple decorator works with eager mode."""

        # test nothing is set
        config = PretrainedConfig()
        model = self._get_model(config)
        inputs = torch.tensor(10)
        output = model(inputs)
        self.assertIsInstance(
            output, BaseModelOutput, "output should be a BaseModelOutput when return_dict is not set"
        )

        # test all explicit cases
        for config_return_dict in [True, False, None]:
            for return_dict in [True, False, None]:
                config = PretrainedConfig(return_dict=config_return_dict)
                model = self._get_model(config)
                output = model(torch.tensor(10), return_dict=return_dict)

                expected_type = tuple if config_return_dict is False or return_dict is False else BaseModelOutput
                message = f"output should be a {expected_type.__name__} when config.use_return_dict={config_return_dict} and return_dict={return_dict}"
                self.assertIsInstance(output, expected_type, message)

    def test_decorator_compiled(self):
        """Test that the can_return_tuple decorator works with compiled mode."""
        config = PretrainedConfig()

        # Output object
        model = self._get_model(config)
        compiled_model = torch.compile(model)
        output = compiled_model(torch.tensor(10))
        self.assertIsInstance(output, BaseModelOutput)

        # Tuple output
        model = self._get_model(config)
        compiled_model = torch.compile(model)
        output = compiled_model(torch.tensor(10), return_dict=False)
        self.assertIsInstance(output, tuple)

    def test_decorator_torch_export(self):
        """Test that the can_return_tuple decorator works with torch.export."""
        config = PretrainedConfig()
        model = self._get_model(config)
        torch.export.export(model, args=(torch.tensor(10),))

    def test_decorator_torchscript(self):
        """Test that the can_return_tuple decorator works with torch.jit.trace."""
        config = PretrainedConfig(return_dict=False)
        model = self._get_model(config)
        inputs = torch.tensor(10)
        traced_module = torch.jit.trace(model, inputs)
        output = traced_module(inputs)
        self.assertIsInstance(output, tuple)

    def test_attribute_cleanup(self):
        """Test that the `_is_top_level_module` attribute is removed after the forward call."""

        config = PretrainedConfig(return_dict=False)
        inputs = torch.tensor(10)

        # working case
        model = self._get_model(config)
        output = model(inputs)

        self.assertIsInstance(output, tuple)
        for name, module in model.named_modules():
            self.assertFalse(
                hasattr(module, "_is_top_level_module"),
                f"Module `{name}` should not have `_is_top_level_module` attribute",
            )

        # model without config
        no_config_model = self._get_model(config, store_config=False)
        output = no_config_model(inputs)

        self.assertIsInstance(output, BaseModelOutput)
        for name, module in no_config_model.named_modules():
            self.assertFalse(
                hasattr(module, "_is_top_level_module"),
                f"Module `{name}` should not have `_is_top_level_module` attribute",
            )

        # model with raise in forward
        model_with_raise = self._get_model(config, raise_in_forward=True)
        with self.assertRaises(ValueError):
            model_with_raise(inputs)

        for name, module in model_with_raise.named_modules():
            self.assertFalse(
                hasattr(module, "_is_top_level_module"),
                f"Module `{name}` should not have `_is_top_level_module` attribute",
            )