File size: 46,369 Bytes
e0be88b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 |
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
from parameterized import parameterized
from transformers import set_seed
from transformers.generation.configuration_utils import ALL_CACHE_IMPLEMENTATIONS
from transformers.testing_utils import (
CaptureStderr,
backend_device_count,
backend_torch_accelerator_module,
cleanup,
get_gpu_count,
is_torch_available,
require_read_token,
require_torch,
require_torch_accelerator,
require_torch_gpu,
require_torch_multi_accelerator,
require_torch_multi_gpu,
slow,
torch_device,
)
from transformers.utils import is_optimum_quanto_available, is_torch_greater_or_equal
if is_torch_available():
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
Cache,
ClvpForCausalLM,
DynamicCache,
Gemma2Config,
GenerationConfig,
HybridCache,
LlamaConfig,
SlidingWindowCache,
StaticCache,
convert_and_export_with_cache,
pipeline,
)
from transformers.integrations.executorch import export_with_dynamic_cache
TEST_CACHE_IMPLEMENTATIONS = [
cache_name
for cache_name in ALL_CACHE_IMPLEMENTATIONS
# TODO (joao): Mamba is not compatible with most models, remove from `ALL_CACHE_IMPLEMENTATIONS`?
if cache_name != "mamba"
# TODO (joao): offloaded_hybrid == offloaded_hybrid_chunked, deprecate one of them
if cache_name != "offloaded_hybrid"
]
@require_torch
class CacheTest(unittest.TestCase):
"""Cache tests that don't require loading models"""
def test_dynamic_cache_retrocompatibility(self):
"""Tests that we can convert back and forth between the legacy cache format and DynamicCache"""
legacy_cache = ()
new_cache = DynamicCache()
# Creates a new cache with 10 layers in both formats
for layer_idx in range(10):
new_key = torch.rand((2, 4, 8, 16))
new_value = torch.rand((2, 4, 8, 16))
new_cache.update(new_key, new_value, layer_idx)
legacy_cache += ((new_key, new_value),)
# Sanity check 1: they must have the same shapes
self.assertTrue(len(legacy_cache), len(new_cache))
for layer_idx in range(10):
self.assertTrue(len(legacy_cache[layer_idx]), len(legacy_cache[layer_idx]))
for key_value_idx in range(2):
self.assertTrue(
legacy_cache[layer_idx][key_value_idx].shape == new_cache[layer_idx][key_value_idx].shape
)
# Sanity check 2: we can get the sequence length in multiple ways with DynamicCache, and they return the
# expected value
self.assertTrue(legacy_cache[0][0].shape[-2] == new_cache[0][0].shape[-2] == new_cache.get_seq_length() == 8)
# Sanity check 3: they must be equal, and both support indexing
for layer_idx in range(10):
for key_value_idx in range(2):
self.assertTrue(
torch.allclose(new_cache[layer_idx][key_value_idx], legacy_cache[layer_idx][key_value_idx])
)
# Test 1: We can convert from legacy to new with no changes
from_legacy = DynamicCache.from_legacy_cache(legacy_cache)
for layer_idx in range(10):
for key_value_idx in range(2):
self.assertTrue(
torch.allclose(from_legacy[layer_idx][key_value_idx], legacy_cache[layer_idx][key_value_idx])
)
# Test 2: We can convert from new to legacy with no changes
to_legacy = new_cache.to_legacy_cache()
for layer_idx in range(10):
for key_value_idx in range(2):
self.assertTrue(
torch.allclose(to_legacy[layer_idx][key_value_idx], new_cache[layer_idx][key_value_idx])
)
def test_reorder_cache_retrocompatibility(self):
"""Tests that Cache.reorder_cache is retrocompatible with the legacy code path"""
legacy_reorder_fn = ClvpForCausalLM._reorder_cache # An example of a legacy `_reorder_cache` function
legacy_cache = ()
new_cache = DynamicCache()
# Creates a new cache with 10 layers in both formats
for layer_idx in range(10):
new_key = torch.rand((4, 4, 8, 16))
new_value = torch.rand((4, 4, 8, 16))
new_cache.update(new_key, new_value, layer_idx)
legacy_cache += ((new_key, new_value),)
# Let's create some dummy beam indices. From the shape above, it is equivalent to the case where num_beams=4
# and batch_size=1
beam_idx = torch.randint(low=0, high=4, size=(4,))
legacy_cache_reordered = legacy_reorder_fn(legacy_cache, beam_idx)
new_cache.reorder_cache(beam_idx)
# Let's check that the results are the same
for layer_idx in range(10):
for key_value_idx in range(2):
self.assertTrue(
torch.allclose(
new_cache[layer_idx][key_value_idx], legacy_cache_reordered[layer_idx][key_value_idx]
)
)
def test_static_cache_mha_mqa_gqa(self):
"""
Tests that static cache works with multi-head attention (MHA), grouped query attention (GQA), and multi-query
attention (MQA)
"""
def _random_kvs(config):
# shape for key and values: (batch_size, num_heads, seq_len, head_dim)
random_keys = torch.rand(
(1, config.num_key_value_heads, 1, config.hidden_size // config.num_attention_heads),
device=torch_device,
)
random_values = torch.rand(
(1, config.num_key_value_heads, 1, config.hidden_size // config.num_attention_heads),
device=torch_device,
)
return random_keys, random_values
mha_config = LlamaConfig(num_attention_heads=32)
mha_static_cache = StaticCache(config=mha_config, max_batch_size=1, max_cache_len=10, device=torch_device)
cached_keys, cached_values = mha_static_cache.update(
*_random_kvs(mha_config), 0, cache_kwargs={"cache_position": torch.arange(1).to(torch_device)}
)
self.assertTrue(cached_keys.shape == (1, 32, 10, 128))
self.assertTrue(cached_values.shape == (1, 32, 10, 128))
gqa_config = LlamaConfig(num_attention_heads=32, num_key_value_heads=4)
gqa_static_cache = StaticCache(config=gqa_config, max_batch_size=1, max_cache_len=10, device=torch_device)
cached_keys, cached_values = gqa_static_cache.update(
*_random_kvs(gqa_config), 0, cache_kwargs={"cache_position": torch.arange(1).to(torch_device)}
)
self.assertTrue(cached_keys.shape == (1, 4, 10, 128))
self.assertTrue(cached_values.shape == (1, 4, 10, 128))
mqa_config = LlamaConfig(num_attention_heads=32, num_key_value_heads=1)
mqa_static_cache = StaticCache(config=mqa_config, max_batch_size=1, max_cache_len=10, device=torch_device)
cached_keys, cached_values = mqa_static_cache.update(
*_random_kvs(mqa_config), 0, cache_kwargs={"cache_position": torch.arange(1).to(torch_device)}
)
self.assertTrue(cached_keys.shape == (1, 1, 10, 128))
self.assertTrue(cached_values.shape == (1, 1, 10, 128))
def _skip_on_failed_cache_prerequisites(test, cache_implementation):
"""Function to skip tests on failed cache prerequisites, given a cache implementation"""
# Installed dependencies
if cache_implementation == "quantized" and not is_optimum_quanto_available():
test.skipTest("Quanto is not available")
# Devices
if "offloaded" in cache_implementation:
has_accelerator = torch_device is not None and torch_device != "cpu"
if not has_accelerator:
test.skipTest("Offloaded caches require an accelerator")
if cache_implementation in ["offloaded_static", "offloaded_hybrid_chunked"]:
if backend_device_count(torch_device) != 1:
test.skipTest("Offloaded static caches require exactly 1 accelerator")
class CacheIntegrationTest(unittest.TestCase):
"""Fast cache integration tests that share the same small model"""
@classmethod
def setUpClass(cls):
# Load once and reuse across tests
cls.tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM2-135M-Instruct", padding_side="left")
cls.model = AutoModelForCausalLM.from_pretrained(
"HuggingFaceTB/SmolLM2-135M-Instruct", device_map="auto", torch_dtype=torch.float16
)
cls.model.config.sliding_window = 256 # hack to enable the use of caches with sliding windows
@parameterized.expand(TEST_CACHE_IMPLEMENTATIONS)
def test_cache_batched(self, cache_implementation):
"""Sanity check: caches' `.update` function expects batched inputs"""
_skip_on_failed_cache_prerequisites(self, cache_implementation)
EXPECTED_GENERATION = ["A sequence: 1, 2, 3, 4, 5, 6, 7, 8,", "A sequence: A, B, C, D, E, F, G, H"]
inputs = self.tokenizer(
["A sequence: 1, 2, 3, 4, 5", "A sequence: A, B, C"], padding=True, return_tensors="pt"
)
inputs = inputs.to(self.model.device)
gen_out = self.model.generate(
**inputs,
do_sample=False,
max_new_tokens=10,
return_dict_in_generate=True,
cache_implementation=cache_implementation,
disable_compile=True,
)
# Sanity check: a cache was used
self.assertIsInstance(gen_out.past_key_values, Cache)
# Confirm that the output matches expectations
decoded = self.tokenizer.batch_decode(gen_out.sequences, skip_special_tokens=True)
self.assertListEqual(decoded, EXPECTED_GENERATION)
@parameterized.expand(TEST_CACHE_IMPLEMENTATIONS)
def test_cache_beam_search(self, cache_implementation):
"""
Sanity check: caches' `reorder_cache` is operational. We can confirm this by looking at the beam indices
(an output sequence contains multiple beam indices).
"""
_skip_on_failed_cache_prerequisites(self, cache_implementation)
if cache_implementation == "offloaded_hybrid_chunked":
# TODO (joao, cyril): something is off with `offloaded_hybrid_chunked` aka `OffloadedHybridCache`: the
# output sequence (and the corresponding beam scores, if we add `output_scores=True`) are significantly
# different from the other caches.
self.skipTest("`offloaded_hybrid_chunked` fails this test")
EXPECTED_GENERATION = [
"Blue is the color of the sky, and the color of",
"Blue is the color of the sky, and the second is",
]
inputs = self.tokenizer(["Blue is"], return_tensors="pt").to(self.model.device)
gen_out = self.model.generate(
**inputs,
do_sample=False,
max_new_tokens=10,
num_beams=2,
num_return_sequences=2,
cache_implementation=cache_implementation,
disable_compile=True,
return_dict_in_generate=True,
)
# Sanity check: a cache was used
self.assertIsInstance(gen_out.past_key_values, Cache)
# At least one of the sequences requires multiple beam indices -> `reorder_cache` had to shift things around
self.assertTrue(any(len(set(beams_in_sequence)) > 1 for beams_in_sequence in gen_out.beam_indices))
# Confirm that the output matches expectations
decoded = self.tokenizer.batch_decode(gen_out.sequences, skip_special_tokens=True)
self.assertListEqual(decoded, EXPECTED_GENERATION)
@parameterized.expand(TEST_CACHE_IMPLEMENTATIONS)
def test_cache_extra_left_padding(self, cache_implementation):
"""Tests that adding extra left-padding does not affect the generation with the cache"""
_skip_on_failed_cache_prerequisites(self, cache_implementation)
EXPECTED_GENERATION = ["The cat's whiskers are also a sign of anxiety."]
inputs = self.tokenizer(["The cat"], padding=True, return_tensors="pt").to(self.model.device)
generation_kwargs = {
"do_sample": False,
"max_new_tokens": 10,
"cache_implementation": cache_implementation,
"disable_compile": True,
}
gen_out = self.model.generate(**inputs, **generation_kwargs)
decoded = self.tokenizer.batch_decode(gen_out, skip_special_tokens=True)
self.assertListEqual(decoded, EXPECTED_GENERATION)
# Now with extra left-padding
inputs_expanded = self.tokenizer(["The cat"], padding=True, return_tensors="pt", pad_to_multiple_of=32)
inputs_expanded = inputs_expanded.to(self.model.device)
self.assertTrue(inputs.input_ids.shape[1] < inputs_expanded.input_ids.shape[1])
gen_out = self.model.generate(**inputs_expanded, **generation_kwargs)
decoded = self.tokenizer.batch_decode(gen_out, skip_special_tokens=True)
self.assertListEqual(decoded, EXPECTED_GENERATION)
@require_torch_accelerator
class CacheHardIntegrationTest(unittest.TestCase):
"""Hard cache integration tests that require loading different models"""
def setUp(self):
# Clears memory before each test. Some tests use large models, which might result in suboptimal torch
# re-allocation if we run multiple tests in a row without clearing memory.
cleanup(torch_device, gc_collect=True)
@classmethod
def tearDownClass(cls):
# Clears memory after the last test. See `setUp` for more details.
cleanup(torch_device, gc_collect=True)
@slow
def test_dynamic_cache_hard(self):
"""Hard test for base cache implementation -- minor numerical fluctuations will cause this test to fail"""
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-4B", padding_side="left")
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-4B", device_map="auto", torch_dtype=torch.bfloat16)
inputs = tokenizer(["Here's everything I know about cats. Cats"], return_tensors="pt").to(model.device)
set_seed(0)
gen_out = model.generate(
**inputs, do_sample=True, max_new_tokens=256, return_dict_in_generate=True, output_scores=True
)
decoded = tokenizer.batch_decode(gen_out.sequences, skip_special_tokens=True)
# sum of the scores for the generated tokens
input_length = inputs.input_ids.shape[1]
score_sum = sum(
[score[0][gen_out.sequences[0][input_length + idx]] for idx, score in enumerate(gen_out.scores)]
)
EXPECTED_GENERATION = (
"Here's everything I know about cats. Cats are mammals, they have four legs, they have a tail, they have "
"a face with a nose, eyes, and mouth. They have fur, they have claws, and they have a body that is "
"covered in fur. They are carnivores, so they eat meat. They are also very clean animals, they groom "
"themselves. They have a lot of different breeds. Some are small, some are large. Some are friendly, "
"some are not. They have a lot of different personalities. They can be very independent, or they can be "
"very affectionate. They can be very playful, or they can be very lazy. They can be very intelligent, or "
"they can be very silly. They have a lot of different behaviors. They can be very curious, or they can "
"be very cautious. They can be very vocal, or they can be very quiet. They can be very social, or they "
"can be very solitary. They can be very active, or they can be very inactive. They can be very "
"affectionate, or they can be very aloof. They can be very playful, or they can be very lazy. They can "
"be very intelligent, or they can be very silly. They have a lot of different behaviors. They can be "
"very curious, or they can"
)
EXPECTED_SCORE_SUM = 11017.4971
self.assertEqual(decoded[0], EXPECTED_GENERATION)
self.assertAlmostEqual(score_sum, EXPECTED_SCORE_SUM, places=2)
self.assertIsInstance(gen_out.past_key_values, DynamicCache) # sanity check
@parameterized.expand([("eager"), ("sdpa")])
@require_torch_accelerator
@slow
def test_static_cache_greedy_decoding_pad_left(self, attn_implementation):
"""Tests that different cache implementations work well with eager and SDPA inference"""
EXPECTED_GENERATION = [
"The best color is the one that is most suitable for the purpose.",
"We should not undermind the issues at hand, but instead, we should focus on the things",
]
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-4B", padding_side="left")
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen3-4B",
torch_dtype=torch.bfloat16,
attn_implementation=attn_implementation,
device_map="auto",
)
inputs = tokenizer(
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
).to(model.device)
generation_kwargs = {"do_sample": False, "max_new_tokens": 10, "return_dict_in_generate": True}
set_seed(0)
gen_out = model.generate(**inputs, **generation_kwargs)
decoded = tokenizer.batch_decode(gen_out.sequences, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, dynamic"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
self.assertIsInstance(gen_out.past_key_values, DynamicCache) # sanity check
set_seed(0)
gen_out = model.generate(**inputs, **generation_kwargs, cache_implementation="static", disable_compile=True)
decoded = tokenizer.batch_decode(gen_out.sequences, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, static, eager"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
self.assertIsInstance(gen_out.past_key_values, StaticCache) # sanity check
set_seed(0)
gen_out = model.generate(**inputs, **generation_kwargs, cache_implementation="static")
decoded = tokenizer.batch_decode(gen_out.sequences, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, static, compiled"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
self.assertIsInstance(gen_out.past_key_values, StaticCache) # sanity check
@require_torch_accelerator
@slow
def test_offloaded_cache_uses_less_memory_than_dynamic_cache(self):
"""Tests that OffloadedCache uses less memory than the default DynamicCache"""
model_name = "microsoft/Phi-3-mini-4k-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
device = model.device
if not is_torch_greater_or_equal("2.7", accept_dev=True) and device.type == "xpu":
self.skipTest(reason="This test requires torch >= 2.7 to run on xpu.")
input_text = "Fun fact:"
inputs = tokenizer(input_text, return_tensors="pt").to(device)
common = {
"num_beams": 4,
"num_beam_groups": 2,
"num_return_sequences": 4,
"diversity_penalty": 1.0,
"max_new_tokens": 20,
"early_stopping": True,
}
original = GenerationConfig(**common)
offloaded = GenerationConfig(cache_implementation="offloaded", **common)
torch_accelerator_module = backend_torch_accelerator_module(device.type)
torch_accelerator_module.reset_peak_memory_stats(device)
model.generate(generation_config=original, **inputs)
original_peak_memory = torch_accelerator_module.max_memory_allocated(device)
torch_accelerator_module.reset_peak_memory_stats(device)
model.generate(generation_config=offloaded, **inputs)
offloaded_peak_memory = torch_accelerator_module.max_memory_allocated(device)
self.assertTrue(offloaded_peak_memory < original_peak_memory)
@require_torch_accelerator
@slow
def test_cache_copy(self):
"""Tests that we can manually set a cache, copy, and reuse it for generation"""
# TODO (joao): test for all cache implementations in `CacheIntegrationTest` after standardizing the
# lazy init of cache layers
model_name = "microsoft/Phi-3-mini-4k-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map=torch_device, torch_dtype=torch.bfloat16)
prompt_cache = StaticCache(
config=model.config, max_batch_size=1, max_cache_len=1024, device=torch_device, dtype=torch.bfloat16
)
INITIAL_PROMPT = "You are a helpful assistant. "
inputs_initial_prompt = tokenizer(INITIAL_PROMPT, return_tensors="pt").to(torch_device)
# This is the common prompt cached, we need to run forward without grad to be able to copy
with torch.no_grad():
prompt_cache = model(**inputs_initial_prompt, past_key_values=prompt_cache).past_key_values
prompts = ["Help me to write a blogpost about travelling.", "What is the capital of France?"]
responses = []
for prompt in prompts:
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to(torch_device)
past_key_values = copy.deepcopy(prompt_cache)
outputs = model.generate(
**new_inputs, past_key_values=past_key_values, max_new_tokens=40, disable_compile=True
)
response = tokenizer.batch_decode(outputs)[0]
responses.append(response)
EXPECTED_DECODED_TEXT = [
"You are a helpful assistant. Help me to write a blogpost about travelling.\n\nTraveling is an "
"enriching experience that broadens our horizons and allows us to explore the world beyond our comfort "
"zones. Whether it's a short weekend getaway",
"You are a helpful assistant. What is the capital of France?\n\n\n## Response:Paris is the capital "
"of France.\n\n\n\n\n\n\n<|endoftext|>",
]
self.assertEqual(responses, EXPECTED_DECODED_TEXT)
@require_torch_multi_gpu
def test_data_parallel_dynamic_cache(self):
"""
Tests that the dynamic cache works with nn.DataParallel. Under the hood, `DynamicCache` is rebuilt from
multiple `DynamicCache` in the gather step.
"""
model_repo = "hf-internal-testing/tiny-random-MistralForCausalLM"
model = AutoModelForCausalLM.from_pretrained(model_repo).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_repo)
# w/o DP: batch_size = num_gpu
# w DP: batch_size = 1 (with num_gpus replicas)
num_gpus = get_gpu_count()
model_inputs = tokenizer(["foo bar"] * num_gpus, return_tensors="pt").to(model.device)
# w/o DP
no_parallelism_cache = model(**model_inputs).past_key_values
self.assertIsInstance(no_parallelism_cache, DynamicCache)
# w DP
model = torch.nn.DataParallel(model)
parallelism_cache = model(**model_inputs).past_key_values
self.assertIsInstance(parallelism_cache, DynamicCache)
# Check that the caches are the same
for layer_idx in range(len(no_parallelism_cache)):
for kv_idx in range(2): # 0 = key, 1 = value
torch.testing.assert_close(
actual=parallelism_cache[layer_idx][kv_idx], expected=no_parallelism_cache[layer_idx][kv_idx]
)
@require_torch_gpu
def test_static_cache_no_cuda_graph_skips(self):
"""
Tests generating with static cache and compilation doesn't skip cuda graphs. Regression test for #36543.
(? We set `fullgraph=True`, which according to torch docs means it should raise an exception. Instead,
messages are being thrown to stderr?)
"""
model_repo = "hf-internal-testing/tiny-random-MistralForCausalLM"
model = AutoModelForCausalLM.from_pretrained(model_repo).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_repo)
inputs = tokenizer(["foo bar"], return_tensors="pt").to(torch_device)
# on `main`, prior to #36543, this would send stderr messages about cuda graphs being skipped.
with CaptureStderr() as cap:
model.generate(**inputs, max_new_tokens=2, cache_implementation="static")
self.assertNotIn("cuda", cap.err.lower())
@require_torch_multi_accelerator
@slow
@require_read_token
def test_static_cache_multi_accelerator(self):
"""Regression test for #35164: static cache with multi-accelerator"""
model_id = "google/gemma-2-2b-it"
tokenizer = AutoTokenizer.from_pretrained(model_id)
device_map = {"model.embed_tokens": 0, "model.norm": 1, "model.rotary_emb": 1, "lm_head": 0}
num_hidden_layers = 26
for i in range(num_hidden_layers):
device_map[f"model.layers.{i}"] = 0 if i < 13 else 1
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="bfloat16",
device_map=device_map,
)
inputs = tokenizer("Today is a beautiful day!", return_tensors="pt").to(0)
_ = model(**inputs)
_ = model.generate(**inputs, max_new_tokens=2, cache_implementation="hybrid")
@require_torch_gpu
@parameterized.expand(TEST_CACHE_IMPLEMENTATIONS)
def test_cache_gptj_model(self, cache_implementation):
"""Tests caches with GPT-J model. Regression test for https://github.com/huggingface/transformers/pull/34799"""
_skip_on_failed_cache_prerequisites(self, cache_implementation)
model_id = "hf-internal-testing/tiny-random-GPTJForCausalLM"
pipe = pipeline("text-generation", model=model_id, torch_dtype=torch.bfloat16)
pipe.model.config.sliding_window = (
256 if cache_implementation in ["sliding_window", "hybrid", "hybrid_chunked"] else None
)
out = pipe(
"hello world",
cache_implementation=cache_implementation,
max_new_tokens=10,
do_sample=False,
disable_compile=True,
return_tensors=True,
)[0]["generated_token_ids"][-10:]
EXPECTED_OUTPUT = [879, 175, 39, 141, 1000, 975, 951, 991, 683, 441]
self.assertListEqual(out, EXPECTED_OUTPUT)
@require_torch
class CacheExportIntegrationTest(unittest.TestCase):
"""Cache tests that rely on `torch.export()` and model loading"""
def test_dynamic_cache_exportability(self):
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM")
model = model.eval()
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM")
prompt = "What is the best way to debug python script?"
inputs = tokenizer(prompt, return_tensors="pt")
attention_mask = inputs.attention_mask
input_ids = inputs.input_ids
ep = export_with_dynamic_cache(model, input_ids, attention_mask)
res = ep.module()(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=DynamicCache(),
use_cache=True,
)
self.assertTrue(len(res.past_key_values.key_cache) == model.config.num_hidden_layers)
self.assertEqual(2 * model.config.num_hidden_layers + 1, len(ep.graph_signature.output_specs))
self.assertEqual(
3,
len(
[
x
for x in ep.graph_signature.input_specs
if x.kind == torch.export.graph_signature.InputKind.USER_INPUT
]
),
)
past_key_values_eager = DynamicCache()
res_eager = model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values_eager,
use_cache=True,
)
self.assertTrue(torch.allclose(res.logits, res_eager.logits))
for k1, k2 in zip(res.past_key_values.key_cache, res_eager.past_key_values.key_cache):
self.assertTrue(torch.allclose(k1, k2))
for v1, v2 in zip(res.past_key_values.value_cache, res_eager.past_key_values.value_cache):
self.assertTrue(torch.allclose(v1, v2))
def test_static_cache_exportability(self):
"""
Tests that static cache works with `torch.export()`
"""
if not is_torch_greater_or_equal("2.3"):
self.skipTest(reason="This test requires torch >= 2.3 to run.")
set_seed(0)
device = "cpu"
dtype = "bfloat16"
cache_implementation = "static"
attn_implementation = "sdpa" # Export and ExecuTorch only works for SdpaAttention
batch_size = 1
max_cache_len = 1234
model_id = "hf-internal-testing/tiny-random-LlamaForCausalLM"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device,
torch_dtype=dtype,
attn_implementation=attn_implementation,
generation_config=GenerationConfig(
use_cache=True,
cache_implementation=cache_implementation,
max_length=max_cache_len,
cache_config={
"batch_size": batch_size,
"max_cache_len": max_cache_len,
"device": device,
},
),
)
# Check if cache config is passed through correctly
self.assertEqual(model.generation_config.use_cache, True)
self.assertEqual(model.generation_config.cache_implementation, cache_implementation)
self.assertEqual(model.generation_config.max_length, max_cache_len)
self.assertTrue(model.generation_config.cache_config is not None)
self.assertEqual(model.generation_config.cache_config.batch_size, batch_size)
self.assertEqual(model.generation_config.cache_config.max_cache_len, max_cache_len)
exported_program = convert_and_export_with_cache(model)
# Check if the exported model is configured with the `StaticCache` correctly
n_static_key_caches = n_static_value_caches = 0
for buffer_name, buffer in exported_program.named_buffers():
if buffer_name.startswith("key_cache"):
self.assertTrue(buffer.shape[0] == batch_size)
self.assertTrue(buffer.shape[2] == max_cache_len)
n_static_key_caches = n_static_key_caches + 1
if buffer_name.startswith("value_cache"):
self.assertTrue(buffer.shape[0] == batch_size)
self.assertTrue(buffer.shape[2] == max_cache_len)
n_static_value_caches = n_static_value_caches + 1
self.assertEqual(n_static_key_caches, model.config.num_hidden_layers)
self.assertEqual(n_static_value_caches, model.config.num_hidden_layers)
# Export with dynamic shapes using Dim.AUTO
tokenizer = AutoTokenizer.from_pretrained(model_id)
input_ids = tokenizer("Here's everything I know", return_tensors="pt").input_ids
dynamic_shapes = {"input_ids": {1: torch.export.Dim.AUTO}, "cache_position": None}
exported_program = convert_and_export_with_cache(
model,
example_input_ids=input_ids,
dynamic_shapes=dynamic_shapes,
strict=False,
)
def test_hybrid_cache_exportability(self):
"""
Tests that static cache works with `torch.export()`
"""
if not is_torch_greater_or_equal("2.6"):
self.skipTest(reason="This test requires torch >= 2.6 to run.")
from transformers.integrations.executorch import TorchExportableModuleForDecoderOnlyLM
set_seed(0)
model_id = "hf-internal-testing/tiny-random-Gemma3ForCausalLM"
model = AutoModelForCausalLM.from_pretrained(model_id)
model.eval()
self.assertEqual(model.config.use_cache, True)
self.assertEqual(model.config.cache_implementation, "hybrid")
# Export + HybridCache
model.eval()
max_batch_size = 1
max_cache_len = 23
exportable_module = TorchExportableModuleForDecoderOnlyLM(model, max_batch_size, max_cache_len)
exported_program = exportable_module.export()
n_g_key_caches = n_g_value_caches = 0
for buffer_name, buffer in exported_program.named_buffers():
if buffer_name.startswith("key_cache"):
self.assertTrue(buffer.shape[0] == max_batch_size)
self.assertTrue(buffer.shape[2] == max_cache_len)
n_g_key_caches = n_g_key_caches + 1
if buffer_name.startswith("value_cache"):
self.assertTrue(buffer.shape[0] == max_batch_size)
self.assertTrue(buffer.shape[2] == max_cache_len)
n_g_value_caches = n_g_value_caches + 1
self.assertEqual(n_g_key_caches, model.config.num_hidden_layers)
self.assertEqual(n_g_value_caches, model.config.num_hidden_layers)
# Export with dynamic shapes using Dim.AUTO
tokenizer = AutoTokenizer.from_pretrained(model_id)
input_ids = tokenizer("Here's everything I know", return_tensors="pt").input_ids
dynamic_shapes = {"input_ids": {1: torch.export.Dim.AUTO}, "cache_position": None}
exported_program = exportable_module.export(
input_ids=input_ids,
dynamic_shapes=dynamic_shapes,
strict=False,
)
class SyntheticCacheTest(unittest.TestCase):
"""Tests cache behavior with simple dummy data."""
def setUp(self):
"""Set up common configuration and cache instances for all tests."""
self.window_size = 4
self.max_cache_len = 4
self.config = Gemma2Config(
num_hidden_layers=1,
num_key_value_heads=1,
num_attention_heads=1,
head_dim=1,
hidden_size=1,
sliding_window=self.window_size,
sliding_window_pattern=2, # Default pattern for hybrid sliding
)
def test_static_cache_out_of_bounds(self):
"""Test StaticCache raises IndexError for out-of-bounds positions."""
static_cache = StaticCache(config=self.config, max_batch_size=1, max_cache_len=self.max_cache_len)
pos_out_of_bounds = torch.tensor([self.max_cache_len]) # Position >= max_cache_len
with self.assertRaises(IndexError):
static_cache.update(
key_states=torch.tensor([[[[1.0]]]]),
value_states=torch.tensor([[[[1.0]]]]),
layer_idx=0,
cache_kwargs={"cache_position": pos_out_of_bounds},
)
def test_static_cache(self):
"""Test StaticCache with manually prefilled states and hardcoded assertions.
Scenario 1: Fill up to near capacity
prefill: [1.0, 2.0, 0.0, 0.0]
update pos 2: [1.0, 2.0, 3.0, 0.0]
Scenario 2: Fill to capacity
update pos 3: [1.0, 2.0, 3.0, 4.0]
"""
# Scenario 1: Fill up to near capacity
static_cache = StaticCache(config=self.config, max_batch_size=1, max_cache_len=self.max_cache_len)
prefill = torch.tensor([1.0, 2.0, 0.0, 0.0])[None, None, :, None]
static_cache.update(key_states=prefill, value_states=prefill, layer_idx=0, cache_kwargs=None)
static_cache.update(
key_states=torch.tensor(3.0)[None, None, None, None],
value_states=torch.tensor(3.0)[None, None, None, None],
layer_idx=0,
cache_kwargs={"cache_position": torch.tensor([2])},
)
self.assertEqual(
static_cache.key_cache[0][0, 0, :, 0].tolist(), [1.0, 2.0, 3.0, 0.0], "StaticCache Scenario 1 failed"
)
# Scenario 2: Fill to capacity
static_cache.update(
key_states=torch.tensor(4.0)[None, None, None, None],
value_states=torch.tensor(4.0)[None, None, None, None],
layer_idx=0,
cache_kwargs={"cache_position": torch.tensor([3])},
)
self.assertEqual(
static_cache.key_cache[0][0, 0, :, 0].tolist(), [1.0, 2.0, 3.0, 4.0], "StaticCache Scenario 2 failed"
)
def test_sliding_window_cache(self):
"""Test SlidingWindowCache with manually prefilled states and hardcoded assertions.
Scenario 1: Update within window, no slide yet
prefill: [1.0, 2.0, 0.0, 0.0]
update pos 2: [1.0, 2.0, 3.0, 0.0]
Scenario 2: Update causing slide
prefill: [1.0, 2.0, 3.0, 4.0]
update pos 4: [2.0, 3.0, 4.0, 5.0] (shift happens as pos > window_size-1)
Scenario 3: Long prompt handling (prompt_len > window_size)
input: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
result: [3.0, 4.0, 5.0, 6.0] (keeps last window_size tokens)
"""
# Scenario 1: Update within window, no slide yet
sliding_cache = SlidingWindowCache(config=self.config, max_batch_size=1, max_cache_len=self.max_cache_len)
prefill = torch.tensor([1.0, 2.0, 0.0, 0.0])[None, None, :, None]
sliding_cache.update(
key_states=prefill,
value_states=prefill,
layer_idx=0,
cache_kwargs={"cache_position": torch.arange(4), "sliding_window": self.window_size},
)
sliding_cache.update(
key_states=torch.tensor(3.0)[None, None, None, None],
value_states=torch.tensor(3.0)[None, None, None, None],
layer_idx=0,
cache_kwargs={"cache_position": torch.tensor([2]), "sliding_window": self.window_size},
)
self.assertEqual(
sliding_cache.key_cache[0][0, 0, :, 0].tolist(),
[1.0, 2.0, 3.0, 0.0],
"SlidingWindowCache Scenario 1 failed",
)
# Scenario 2: Update causing slide
sliding_cache = SlidingWindowCache(config=self.config, max_batch_size=1, max_cache_len=self.max_cache_len)
prefill = torch.tensor([1.0, 2.0, 3.0, 4.0])[None, None, :, None]
sliding_cache.update(
key_states=prefill,
value_states=prefill,
layer_idx=0,
cache_kwargs={"cache_position": torch.arange(4), "sliding_window": self.window_size},
)
sliding_cache.update(
key_states=torch.tensor(5.0)[None, None, None, None],
value_states=torch.tensor(5.0)[None, None, None, None],
layer_idx=0,
cache_kwargs={"cache_position": torch.tensor([4]), "sliding_window": self.window_size},
)
self.assertEqual(
sliding_cache.key_cache[0][0, 0, :, 0].tolist(),
[2.0, 3.0, 4.0, 5.0],
"SlidingWindowCache Scenario 2 failed",
)
# Scenario 3: Long prompt handling
sliding_cache = SlidingWindowCache(config=self.config, max_batch_size=1, max_cache_len=self.max_cache_len)
long_prefill = torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])[None, None, :, None]
sliding_cache.update(
key_states=long_prefill,
value_states=long_prefill,
layer_idx=0,
cache_kwargs={"cache_position": torch.arange(6), "sliding_window": self.window_size},
)
self.assertEqual(
sliding_cache.key_cache[0][0, 0, :, 0].tolist(),
[3.0, 4.0, 5.0, 6.0],
"SlidingWindowCache Scenario 3 failed",
)
def test_hybrid_cache_static_mode(self):
"""Test HybridCache in static mode with hardcoded assertions.
Scenario 1: Static layer behavior
prefill: [1.0, 2.0, 0.0, 0.0]
update pos 2: [1.0, 2.0, 3.0, 0.0]
Scenario 2: Fill to capacity
update pos 3: [1.0, 2.0, 3.0, 4.0]
"""
config = copy.deepcopy(self.config)
config.sliding_window_pattern = 1 # Layer 0 is static (1 % 1 == 0)
# Scenario 1
hybrid_cache_static_mode = HybridCache(config=config, max_batch_size=1, max_cache_len=self.max_cache_len)
prefill = torch.tensor([1.0, 2.0, 0.0, 0.0])[None, None, :, None]
hybrid_cache_static_mode.update(
key_states=prefill,
value_states=prefill,
layer_idx=0,
cache_kwargs={"cache_position": torch.arange(4)},
)
hybrid_cache_static_mode.update(
key_states=torch.tensor(3.0)[None, None, None, None],
value_states=torch.tensor(3.0)[None, None, None, None],
layer_idx=0,
cache_kwargs={"cache_position": torch.tensor([2])},
)
self.assertEqual(
hybrid_cache_static_mode.key_cache[0][0, 0, :, 0].tolist(),
[1.0, 2.0, 3.0, 0.0],
"HybridCache Static Scenario 1 failed",
)
# Scenario 2
hybrid_cache_static_mode.update(
key_states=torch.tensor(4.0)[None, None, None, None],
value_states=torch.tensor(4.0)[None, None, None, None],
layer_idx=0,
cache_kwargs={"cache_position": torch.tensor([3])},
)
self.assertEqual(
hybrid_cache_static_mode.key_cache[0][0, 0, :, 0].tolist(),
[1.0, 2.0, 3.0, 4.0],
"HybridCache Static Scenario 2 failed",
)
def test_hybrid_cache_sliding_mode(self):
"""Test HybridCache in sliding mode with hardcoded assertions.
Scenario 1: Update within window, no slide yet
prefill: [1.0, 2.0, 0.0, 0.0]
update pos 2: [1.0, 2.0, 3.0, 0.0]
Scenario 2: Update causing first slide
prefill: [1.0, 2.0, 3.0, 4.0]
update pos 4: [2.0, 3.0, 4.0, 5.0] (shift happens as pos > window_size-1)
Scenario 3: Update causing subsequent slide
update pos 5: [3.0, 4.0, 5.0, 6.0] (shift continues)
Scenario 4: Long prompt handling (prompt_len > window_size)
input: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
result: [3.0, 4.0, 5.0, 6.0] (keeps last window_size tokens)
"""
# Scenario 1: Update within window, no slide yet
hybrid_cache = HybridCache(config=self.config, max_batch_size=1, max_cache_len=self.max_cache_len)
prefill = torch.tensor([1.0, 2.0, 0.0, 0.0])[None, None, :, None]
hybrid_cache.update(
key_states=prefill,
value_states=prefill,
layer_idx=0,
cache_kwargs={"cache_position": torch.arange(4), "sliding_window": self.window_size},
)
hybrid_cache.update(
key_states=torch.tensor(3.0)[None, None, None, None],
value_states=torch.tensor(3.0)[None, None, None, None],
layer_idx=0,
cache_kwargs={"cache_position": torch.tensor([2]), "sliding_window": self.window_size},
)
self.assertEqual(
hybrid_cache.key_cache[0][0, 0, :, 0].tolist(),
[1.0, 2.0, 3.0, 0.0],
"HybridCache Sliding Scenario 1 failed",
)
# Scenario 2: Update causing first slide
hybrid_cache = HybridCache(config=self.config, max_batch_size=1, max_cache_len=self.max_cache_len)
prefill = torch.tensor([1.0, 2.0, 3.0, 4.0])[None, None, :, None]
hybrid_cache.update(
key_states=prefill,
value_states=prefill,
layer_idx=0,
cache_kwargs={"cache_position": torch.arange(4), "sliding_window": self.window_size},
)
hybrid_cache.update(
key_states=torch.tensor(5.0)[None, None, None, None],
value_states=torch.tensor(5.0)[None, None, None, None],
layer_idx=0,
cache_kwargs={"cache_position": torch.tensor([4]), "sliding_window": self.window_size},
)
self.assertEqual(
hybrid_cache.key_cache[0][0, 0, :, 0].tolist(),
[2.0, 3.0, 4.0, 5.0],
"HybridCache Sliding Scenario 2 failed",
)
# Scenario 3: Update causing subsequent slide
hybrid_cache.update(
key_states=torch.tensor(6.0)[None, None, None, None],
value_states=torch.tensor(6.0)[None, None, None, None],
layer_idx=0,
cache_kwargs={"cache_position": torch.tensor([5]), "sliding_window": self.window_size},
)
self.assertEqual(
hybrid_cache.key_cache[0][0, 0, :, 0].tolist(),
[3.0, 4.0, 5.0, 6.0],
"HybridCache Sliding Scenario 3 failed",
)
# Scenario 4: Long prompt handling
hybrid_cache = HybridCache(config=self.config, max_batch_size=1, max_cache_len=self.max_cache_len)
long_prefill = torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])[None, None, :, None]
hybrid_cache.update(
key_states=long_prefill,
value_states=long_prefill,
layer_idx=0,
cache_kwargs={"cache_position": torch.arange(6), "sliding_window": self.window_size},
)
self.assertEqual(
hybrid_cache.key_cache[0][0, 0, :, 0].tolist(),
[3.0, 4.0, 5.0, 6.0],
"HybridCache Sliding Scenario 4 failed",
)
|