File size: 6,728 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from transformers import is_torch_available
from transformers.testing_utils import (
    TestCasePlus,
    backend_device_count,
    execute_subprocess_async,
    get_torch_dist_unique_port,
    require_accelerate,
    require_fp8,
    require_torch_multi_accelerator,
    run_first,
    torch_device,
)


if is_torch_available():
    import torch
    import torch.distributed
    import torch.utils.data

    from transformers import (
        AutoModelForCausalLM,
        AutoTokenizer,
        DataCollatorForSeq2Seq,
        EvalPrediction,
        GenerationConfig,
        HfArgumentParser,
        PreTrainedTokenizerBase,
        Seq2SeqTrainer,
        Seq2SeqTrainingArguments,
    )

    class DummyTextDataset(torch.utils.data.Dataset[str]):
        def __init__(self, tokenizer: PreTrainedTokenizerBase) -> None:
            data = 4 * [
                "Hello world!",
                "The quick brown fox jumps over the lazy dog.",
            ]
            self.data = [
                {k: v.squeeze(0) for k, v in tokenizer(item, return_tensors="pt", return_attention_mask=True).items()}
                for item in data
            ]
            for item in self.data:
                item["labels"] = item["input_ids"]

        def __len__(self) -> int:
            return len(self.data)

        def __getitem__(self, i: int) -> str:
            return self.data[i]


class TestFSDPTrainer(TestCasePlus):
    @require_torch_multi_accelerator
    @require_accelerate
    @run_first
    def test_trainer(self):
        output_dir = self.get_auto_remove_tmp_dir()
        cmd = [
            "accelerate",
            "launch",
            "--use_fsdp",
            "--main_process_port",
            f"{get_torch_dist_unique_port()}",
            "--num_processes",
            f"{backend_device_count(torch_device)}",
            "--fsdp_transformer_layer_cls_to_wrap",
            "GPT2Block",
            f"{self.test_file_dir}/test_trainer_fsdp.py",
            "--output_dir",
            f"{output_dir}",
            "--report_to",
            "none",
        ]
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


class TestFSDPTrainerFP8(TestCasePlus):
    @require_torch_multi_accelerator
    @require_accelerate
    @require_fp8
    @run_first
    def test_trainer(self):
        output_dir = self.get_auto_remove_tmp_dir()
        cmd = [
            "accelerate",
            "launch",
            "--use_fsdp",
            "--main_process_port",
            f"{get_torch_dist_unique_port()}",
            "--num_processes",
            f"{backend_device_count(torch_device)}",
            "--mixed_precision",
            "fp8",
            "--fsdp_transformer_layer_cls_to_wrap",
            "GPT2Block",
            f"{self.test_file_dir}/test_trainer_fsdp.py",
            "--output_dir",
            f"{output_dir}",
            "--report_to",
            "none",
        ]
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


class TestFSDPTrainerWrap(TestCasePlus):
    @require_torch_multi_accelerator
    @require_accelerate
    @run_first
    def test_trainer(self):
        output_dir = self.get_auto_remove_tmp_dir()
        cmd = [
            "accelerate",
            "launch",
            "--use_fsdp",
            "--main_process_port",
            f"{get_torch_dist_unique_port()}",
            "--num_processes",
            f"{backend_device_count(torch_device)}",
            "--fsdp_transformer_layer_cls_to_wrap",
            "GPT2Block",
            f"{self.test_file_dir}/test_trainer_fsdp.py",
            "--output_dir",
            f"{output_dir}",
            "--report_to",
            "none",
            "--auto_find_batch_size",
            "True",
        ]
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


class TestFSDPTrainerTorchCompile(TestCasePlus):
    @require_torch_multi_accelerator
    @require_accelerate
    @run_first
    def test_trainer(self):
        output_dir = self.get_auto_remove_tmp_dir()
        cmd = [
            "accelerate",
            "launch",
            "--use_fsdp",
            "--main_process_port",
            f"{get_torch_dist_unique_port()}",
            "--num_processes",
            f"{backend_device_count(torch_device)}",
            "--fsdp_transformer_layer_cls_to_wrap",
            "GPT2Block",
            f"{self.test_file_dir}/test_trainer_fsdp.py",
            "--torch_compile_mode",
            "default",
            "--output_dir",
            f"{output_dir}",
            "--report_to",
            "none",
        ]
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


if __name__ == "__main__":
    parser = HfArgumentParser((Seq2SeqTrainingArguments,))
    training_args = parser.parse_args_into_dataclasses()[0]
    training_args.per_device_eval_batch_size = 1
    training_args.use_legacy_prediction_loop = False
    training_args.predict_with_generate = True
    training_args.generation_config = GenerationConfig(max_length=30)

    pretrained_model_name = "hf-internal-testing/tiny-random-gpt2"
    tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name)
    tokenizer.pad_token = tokenizer.eos_token
    device = torch.device(torch.distributed.get_rank())
    model = AutoModelForCausalLM.from_pretrained(pretrained_model_name).to(device)

    def compute_metrics(p: EvalPrediction) -> dict[str, bool]:
        return {"accuracy": (p.predictions == p.label_ids).mean()}

    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        data_collator=DataCollatorForSeq2Seq(tokenizer, model),
        eval_dataset=DummyTextDataset(tokenizer),
        compute_metrics=compute_metrics,
    )

    metrics = trainer.evaluate()